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Developing AI with Reinforcement Learning
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Reinforcement Learning Applications

(a) Games (b) Health Care (c) Ridesharing

(d) Robotics (e) Finance (f) Automated Driving

We focus on applications in mobile health (mHealth)
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Applications in mHealth

• Use of cellphones and wearable
devices in healthcare

• Management of Type-I diabetes

• Subject: Patients with Type-I
diabetes

• Intervention: Determine whether a
patient needs to inject insulin or
not based on their glucose levels,
food intake, exercise intensity

• Data: OhioT1DM dataset (Marling
and Bunescu, 2018)
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In this talk, we will focus on ...

• Statistical inference in reinforcement learning (RL)

• Is statistical inference useful for RL?
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Sequential Decision Making
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The Agent’s Policy

• The agent implements a mapping πt from the observed data to a probability
distribution over actions at each time step

• The collection of these mappings π = {πt}t is called the agent’s policy:

πt(a|s̄) = Pr(At = a|S̄t = s̄),

where S̄t = (St ,Rt−1,At−1,St−1, · · ·,R0,A0,S0) is the set of observed data
history up to time t.

• History-Dependent Policy: πt depends on S̄t .

• Markov Policy: πt depends on S̄t only through St .

• Stationary Policy: π is Markov & πt is homogeneous in t, i.e., π0 = π1 = · · ·.
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The Agent’s Policy (Cont’d)
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Reinforcement Learning

• RL algorithms: trust region policy optimization (Schulman et al., 2015), deep
Q-network (DQN, Mnih et al., 2015), asynchronous advantage actor-critic (Minh et
al., 2016), quantile regression DQN (Dabney et al., 2018).

• Foundations of RL:
• Markov decision process (MDP, Puterman, 1994): ensures the optimal policy is

stationary , and is not history-dependent.
• Markov assumption (MA): conditional on the present, the future and the past are

independent,

St+1,Rt ⊥⊥ {(Sj ,Aj ,Rj )}j<t |St ,At .

When Rt is a deterministic function of (St ,At ,St+1)

St+1 ⊥⊥ {(Sj ,Aj )}j<t |St ,At .

The Markov transition kernel is homogeneous in time
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Markov Assumption
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Markov Assumption
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RL Models

Figure: Causal diagrams for MDPs, HMDPs & POMDPs. The solid lines characterize the relationships
among the variables and the dashed lines indicate the information needed to implement the optimal policy.
{St}t are hidden in Model III. 11 / 22



Contributions

• Methodologically
• propose a forward-backward learning procedure to test MA
• first work on developing consistent tests for MA in RL
• sequentially apply the proposed test for RL model selection (e.g., test kth order MDP

for k = 1, 2, · · · )
• critical to offline domains given a historical dataset without online collection:

• For under-fitted models, any stationary policy is not optimal
• For over-fitted models, the estimated policy might be very noisy due to the inclusion of

many irrelevant lagged variables

• Empirically
• identify the optimal policy in high-order MDPs
• detect partially observable MDPs

• Theoretically
• prove our test controls type-I error under a bidirectional asymptotic framework
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Applications in High-Order MDPs

• Data: the OhioT1DM dataset

• Measurements for 6 patients with type
I diabetes over 8 weeks.

• One-hour interval as a time unit.

• State: glucose levels, food intake,
exercise intensity

• Action: to inject insulin or not.

• Reward: the Index of Glycemic
Control (Rodbard, 2009).
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Applications in High-Order MDPs (Cont’d)

• Analysis I:
• sequentially apply our test to determine the order of MDP
• conclude it is a fourth-order MDP

• Analysis II:
• split the data into training/testing samples
• policy optimization based on fitted-Q iteration, by assuming it is a k-th order MDP

for k = 1, · · · , 10
• policy evaluation based on fitted-Q evaluation
• use random forest to model the Q-function
• repeat the above procedure to compute the average value of policies computed under

each MDP model assumption
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Applications in Partially Observable MDPs
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Applications in Partially Observable MDPs (Cont’d)

• Under H1 (MA is violated, alternative).
Significance level = 0.05.

• Under H0 (MA holds, null). Significance
level = 0.05.
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Methodology

• First work to test MA in RL
• Existing approach in time series: Cheng and Hong (2012)

• characterize MA based on the notion of conditional characteristic function (CCF)
• use local polynomial regression to estimate CCF

• Challenge:
• develop a valid test for MA in moderate or high-dimensions
• the dimension of the state increases as we concatenate measurements over multiple

time points in order to test for a high-order MDP.

• This motivates our forward-backward learning procedure.
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Methodology (Cont’d)

Some key components of our algorithm:
• To deal with moderate or high-dimensional state space, employ modern machine
learning (ML) algorithms to estimate CCF:

• Learn CCF of St+1 given At and St (forward learner)
• Learn CCF of (St , At) given (St+1, At+1) (backward learner)
• Develop a random forest-based algorithm to estimate CCF
• Borrow ideas from the quantile random forest algorithm (Meinshausen, 2006) to

facilitate the computation

• To alleviate the bias of ML algorithms, construct doubly-robust test statistics by
integrating forward and backward learners;

• To improve the power, consider a maximum-type test statistic;

• To control the type-I error, approximate the distribution of our test via
high-dimensional multiplier bootstrap (Chernozhukov, et al., 2014).
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Bidirectional Theory

• N the number of trajectories
• T the number of decision points per trajectory
• bidirectional asymptotics: a framework allows either N or T → ∞
• large N , small T (Intern Health Study)

• small N , large T (OhioT1DM dataset)

• large N , large T (games)
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Bidirectional Theory (Cont’d)

(C1) Actions are generated by a fixed behavior policy.

(C2) The observed data is exponentially β-mixing.

(C3) The ℓ2 prediction errors of forward and backward learners converge at a rate faster
than (NT )−1/4.

Theorem

Assume (C1)-(C3) hold. Then under some other mild conditions, our test controls the
type-I error asymptotically as either N or T diverges to ∞.
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Some Follow-ups

• Double GANs for conditional
independence testing (JMLR, 2021)

• Testing DAGs via supervised, structural
learning and GANs (JASA, 2023+)

• Testing Markovanity in time series via
deep generative learning (JRSSB,
2023+)

• Derive the convergence rate of MDN

• A robust test for the stationarity
assumption in RL (ICML, 2023)

• Our test helps identify a better policy
in the Intern Health Study
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Thank You!

,Papers and softwares can be found on my personal website

callmespring.github.io
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