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Precision medicine: individualized treatment regime (ITR)
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Individualized
Decision Making

Sequenced Treatment Alternatives to Relieve Depression

(STAR*D) Study (Fava et al., 2003)
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o 381 covariates available at Level 3, 305 at Level 2
o 73 patients BUP or SER at Level 2, MRT or NTP at Level 3
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Individualized
Decision Making

Schizophrenia Study (Tarrier et al., 2004)
o A multicentre, randomized controlled trial
o Over 400 patients with schizophrenia enrolled in 3 treatment centres in
England
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o Treatments: cognitive behavioral therapy (CBT) + treatment as usual;
supportive counselling (SC) + treatment as usual.

o Response: the reduction of Positive and Negative Syndrome Scale
(PANSS) score after 18 months.

o Covariates: PANSS score at baseline; log duration of untreated psychosis.

o Patients enrolled at different treatment centres show heterogeneity in
optimal treatment decision, due to differences in characteristics of
treatment setting across centres
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Individualized
Decision Making

Didi Chuxing (the world's leading ridesharing platform)
o'

o Individualized decision making:
Order dispatching strategy based
on each order’s characteristics:

o starting point
o destination
o time
o Number of observations: 108
orders per week in Guangzhou
(heat map at the right)
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Individualized
Decision Making

Q1. Individualize or Not?
(Statistical Inference)

Q2. Estimate Optimal In-
dividualized Decision Rule
(Estimation)

Q3. Include More Covariates?
(Model Selection)
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Maximin-Projection Learning for Individualized
Decision Making with Heterogeneous Data

joint work with Rui Song, Wenbin Lu and Bo Fu

——Journal of the Royal Statistical Society: Series B (2018), 80, 681-702.
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o Individualized treatment regime (ITR): a function maps the covariate
space to the space of available treatment options.

Objective: identify the optimal ITR to reach the best clinical outcome.

Single stage study:
o Covariates X: p-dimensional vector.
o Treatment A: 1 for the treatment, 0 for the control.
e Response Y: assuming larger values are desirable.

Q-function: Q(a,x) = E(Y|A=a, X = x).
Contrast function: 7(x) = Q(1,x) — Q(0, x).
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o Individualized treatment regime (ITR): a function maps the covariate
space to the space of available treatment options.

Objective: identify the optimal ITR to reach the best clinical outcome.

Single stage study:

o Covariates X: p-dimensional vector.

o Treatment A: 1 for the treatment, 0 for the control.

e Response Y: assuming larger values are desirable.
Q-function: Q(a,x) = E(Y|A=a, X = x).
Contrast function: 7(x) = Q(1,x) — Q(0, x).

4ot (x) = I(r(x) > 0)
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|
Schizophrenia study (Tarrier et al., 2004)

@ Over 400 patients with schizophrenia enrolled in 3 treatment centres
in England

Manchester Liverpool North Nottmghamshlre

@ Patients enrolled at different treatment centres show heterogeneity in
response to treatments (Tarrier et al., 2004; Dunn and Bentall, 2007)

@ Heterogeneity due to the differences in characteristics (unobserved or
partially observed) of treatment setting across centres

@ The optimal ITR can vary across different centres
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-
Schizophrenia study (Tarrier et al., 2004)

Question
@ How to derive a reliable ITR to the group of future patients (possibly
from a new treatment centre)?

e Any groupwise optimal ITR in the observed data might not be optimal
(due to that characteristics explaining heterogeneity are unobserved)

Solution
@ Provide an overall ITR by aggregating groupwise optimal ITRs
estimated from the observed dataset

e How to effectively combine groupwise ITRs?
e What is a good criterion for combining ITRs?
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Optimal ITR with a single population

@ Q-learning (Watkins and Dayan, 1992; Murphy, 2005; Moodie et al.,
2014; Song et al., 2015)

A-learning (Murphy, 2003; Robins, 2004; Schulte et al., 2014)
Value search method (Zhang et al., 2012, 2013)

Outcome weighted learning (OWL, Zhao et al., 2012, 2015)
Decision lists (Zhang et al., 2015, 2017)

Tree-based methods (Laber and Zhao, 2015; Zhu et al., 2017)

Optimal ITR with heterogeneous populations

@ Why important? Multicentre studies are becoming more and more
popular

@ Our proposed ITR: accounts for heterogeneity due to different
treatment settings across centres
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Notation

e Patients are coming from G groups (treatment centres).
@ For the g-th group (treatment centre),

Yg: response (larger values are desirable).
: treatment (binary).

Ag
Xg: covariates (standardized, E(Xg) = 0, cov(Xg) = /).
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-
Model group heterogeneity

@ Groupwise contrast function:

Tg(x) = E(YglAg =1,Xg =x) —E(Yg|Ag = 0,Xg = x)

= xTﬁg +cg = >'<T0g,

where x = (x7,1)7, 0, = ( gT, )’
@ Sources of heterogeneity:

o ¢g: Groupwise marginal treatment effect E7z(X;), the average
treatment effect (ATE) of the g-th group
o [g: Groupwise individualized treatment effect.
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|
Idea
o Groupwise Optimal ITR: I(74(x) > 0) =1(x760, > 0)

o Recommended ITR: I(x"6# > 0) subject to ||f]| = 1 that achieves
some ‘“optimality”
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|
Idea
o Groupwise Optimal ITR: I(74(x) > 0) =1(x760, > 0)

o Recommended ITR: I(x"6# > 0) subject to ||f]| = 1 that achieves
some ‘“optimality”

How to define “optimality”
o Define the reward function Rg(6) given the decision I(x76 > 0).
e Maximin effects (maximize the minimum reward)
OM = argmax  min _ R.(6).
10a=1 g€{l,G} ©
@ Why “maximin”?
o Minimize the risk of the worst-case scenario
e Minimax strategy in game theory (Wald, 1945)

o Good performance in dealing with data heterogeneity (empirically &
theoretically)
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How to choose reward function

Maximin effects

QM:argmax min  R.(6).
l6].=1 &€{1,....G} £ (0)

Example (Value Difference (VD))

VD(6) = EY;(d(X,.6)) — EY;(0),

where d(Xg,0) = I(X] 6 > 0).
The maximin effects

oM. =argmax min _ VD,(6).
@) |6]2=1 &€{1.....G} g (0)
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How to choose reward function

Example (average Percentage of making Correct Decisions (PCD))

PCDg(0) =1 — EI(X] 65 > 0) — (X6 > 0)],
where Xg = (XgT, nr.

The maximin effects

OM —argmax min _ PCDg(6).
@ l6],=1 &€{1,...G} £(9)

Chengchun Shi (NCSU) Individualized Decision Making
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How to choose reward function

Pros
@ PCD and value difference function are clinically important

Cons

@ The empirical estimators for the value difference and PCD are
non-smooth and non-concave functionals of 6.

@ Computationally, the estimating procedure is difficult to implement.

@ Theoretically, the convergence rates of these maximin estimators are
slower than O,(n~1/?).
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A toy example
a=--=cc=0 X,...,Xg ~ N(0,1,). Forany 0 = (37,0)7,

VD,(0) = 6] 0/V2r.
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A toy example
a=--=cc=0 X,...,Xg ~ N(0,1,). Forany 0 = (37,0)7,

VD,(0) = 6] 0/V2r.

Maximin-projection learning

OM = argmax min _ 076.
16],=1 {16} &
© When [[1]l2 = --- = [[fcll2,

6M = arg max min 9;9/||9gH2 = arg min max Z(fg, 0).
Iol=1 & l6l=1 &

Similar to the maximin correlation approach (Avi-ltzhak et al., 1995;
Lee et al., 2016).
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Statistical interpretation

Theorem (Equivalence of 8™ and Gé\f))

Assume Xg's (after groupwise standardization) are i.i.d. spherically
distributed and ¢y = ¢ = --- = c¢. Then,

oM = argmax  min _ VDg(6).
10]a=1 &€{L,-.G} ¢ (0)

Theorem (Equivalence of #™ and 9%)

Assume Xg's (after groupwise standardization) are i.i.d. spherically

distributed, c; = o = --- = cg, and all ||Bg||2’s are the same. Then,
eM

= arg max min PCD..(0).
16],=1 &€{1.....G} 2 (0)

Only need to focus on OM!

Chengchun Shi (NCSU) Individualized Decision Making
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Geometric characterization

Example: 81 = (1,0)7, B> = (cos(60°),sin(60°))7, B3 =
(cos(70°),sin(70°)) 7, B4 = (0,1)7, ct = co = c3 = ¢4 = 0.
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Figure: Plots of subgroup parameter 3;'s (denoted by the square symbol) and the
maximin effects (denoted by the circle symbol).
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Equicorrelated point set (Avi-ltzhak et al., 1995)

Define the equicorrelated point set
E(V) = {t eR™tTw; = tTw, Vi je{l,.. .,q}} ,
W, an m x g matrix, and the optimal equicorrelated point

E*(V) =arg max{tT\U,-,Vi e{1,..., q}} .
teE(W)
l[tll2<1

Lemma

For any W, if 15 € C(WT), then

Er(W) = {17 (W) "1} 2w(wT vyt

Chengchun Shi (NCSU) Individualized Decision Making
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Theorem

(1) Assume Fo = maxg,—1 ming 070 > 0, then there exists some set
To C{1,..., G} such that

0] 6" = Fo,Vg € To, 66" > Fo,Vg ¢ To,

and O™ = E*(©1,), where © = [01,02,...,0¢].
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Theorem

(1) Assume Fo = maxg,—1 ming 070 > 0, then there exists some set
To C{1,..., G} such that

0] 6" = Fo,Vg € To, 66" > Fo,Vg ¢ To,

and O™ = E*(©1,), where © = [01,02,...,0¢].
(11) In addition, we have

0" = {1],(81,01,) 1 5,)} /?04,(07,01,) 11,

(111) Moreover, if the set of vectors 8, g € Iy is linearly independent, then
a necessary and sufficient condition for ™ = E*(©z,) is that each element
in (©7,01,) "z, is nonnegative. (Essential to establish statistical
properties of the maximin estimator)
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Estimating procedure

@ Assume estimators @1, . ,BA(;, & (computed based on Q-learning or
A-learning) are available. Let 6, = (ﬁgT, &)’
O™ = argmax  min 076 = argmax  min (B;B + &oc).
l6ll=1 &€{1,-.G} (8T €)ll=1 {1~ G}

@ Step 1: Concave optimization problem

BO = arg max min BTﬁ
I8l<1 g€{l..G} &

o Lagrange dual problem (QP, Lee et al., 2016):
X = argmin XTETEX, subject to lgx =1,x>0,

where B = [Bl,...,ﬁg].
° 60 = Bx. When ||Bo||2 > 0, set 50 = ﬁo/”ﬂo‘b
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Estimating procedure

@ Assume estimators ﬁl, . ,BA(;, & (computed based on Q-learning or
A-learning) are available. Let 6, = (ﬁgT, &)’
"M . AT . AT N
O™ =argmax min 6,60 = argmax min _(8; B+ o).
[6],=1 &€{1,-,G} (BT ,c)|l=1 8L, G}

@ Step 2: Set kg = Mingc(1,...6} BAOTBg-
o If kg >0, set

~ T
oM _ Koy o
— _ _ | .
Ve + & \RG+E

oM = (OZ, sgn(éo))T.

o Else, set
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Estimating procedure

@ Assume estimators ﬁl, . ,BA(;, & (computed based on Q-learning or
A-learning) are available. Let 6, = (ﬁgT, &)’
O™ = argmax min 670 = argmax  min (BgTB + &oc).
l6=1 8€{1,,C} 187 c)ll=1 811G}

@ Step 2: Set kg = Mingc(1,...6} BAOTBg-
o If kg >0, set

~ T
oM _ Koy o
— _ _ | .
Ve + & \RG+E

oM = (OZ, sgn(éo))T.

o Else, set

e Output d(x) =I(xT6M > 0).
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Statistical properties

Theorem (Consistency and rate of convergence)

Let © = (él, - ,HAG). Under certain conditions, we have with probability
going to 1 that M equals

{17, (0£,01,) "Lz} V/?01,(04,07,) iz

In addition,

oM — oMo = Og — Ogl2 ) -
16 - "1z = 0 (maxl0s — 0l )

Theorem (Asymptotic normality)

Assume for all subgroup estimators are jointly asymptotically normal.
Then, \/n(6M — 0M) is asymptotically normal.

Chengchun Shi (NCSU) Individualized Decision Making
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Simulation setting

@ Four groups of patients, each generated according as
Yo = h(Xgj) + 2AgXg; B + cgj
Xgi "% N(0, 1) and e <7 N(0,0.25).

Two baseline models for h: linear and nonlinear.

Two propensity score models for 7: constant and probit.

For each setting: subgroup estimator obtained using A-learning based
on a linear model for h and logistic model for 7:

@ S1: 7 correct, h correct, @ S3: w wrong, h correct,
@ S2: 7 correct, h wrong, © 54: m wrong, h wrong.
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Simulation setting (continued)

@ Two scenarios for the subgroup parameters (representing different
degrees of heterogeneity):
(I) same magnitudes, different angles
(I1) similar angles, different magnitudes

151 1 15F

9
9

second component of §
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°

051

051

151 q 151

25 -2 15 -1 05 0 05 1 15 2 25 25 -2 -15 -1 05 0 05 1 15 2 25
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-
Competing methods

e Random effects meta-analyses (DerSimonian and Laird, 1986;
Jackson et al., 2010; Chen et al., 2012)

e Compute 6 as a weighted average of ég’s,

G G
R (z@gmo)—l) (zm L) eg) .

g=1

o Output I(xTR > 0).
o Evaluation: leave-one-group-out cross-validation

e Obtain ITR based any of the three training groups.
e Evaluate its value difference on the remaining testing group.
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Scenario |I: same magnitudes, different angles

Table: VD results (with standard errors in parenthesis) under the estimated
maximin ITR and the ITR obtained by random effects meta-analyses.

Testing group

First group

Second group

Third group

Fourth group

random
S1  maximin

-0.0002(0.001)
0.002(0.001)

0.651(0.001)
0.736(0.0004)

0.651(0.001)

0.736(0.0004)

0.0005(0.001)
0.003(0.001)

random
S2  maximin

0.001(0.001)
0.005(0.003)

0.650(0.001)
0.734(0.001)

0.646(0.001)
0.734(0.001

-0.002(0.002)
0.002(0.002)

random
S3  maximin

-0.002(0.002)
-0.0003(0.002)

0.648(0.002)
0.734(0.001)

0.649(0.001

0.001(0.002)
-0.003(0.002)

random
S4  maximin

-0.002(0.003)
-0.003(0.003)

0.638(0.003)
0.731(0.001)

0.647(0.002

)
)
0.735(0.001)
)
0.728(0.001)

0.008(0.003)
-0.008(0.004)
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Scenario II: similar angles, different magnitudes

Table: VD results (with standard errors in parenthesis) under the estimated
maximin ITR and the ITR obtained by random effects meta-analyses.

Testing group

First group

Second group

Third group

Fourth group

random
S1  maximin

0.803(<0.001)
0.847(<0.001)

0.598(<0.001)
0.588(<0.001)

0.865(<0.001
0.865(<0.001

0.761(<0.001)
0.769(<0.001)

random
S2  maximin

0.803(<0.001)
0.843(0.001)

0.598(<0.001)

0.863(<0.001

0.762(<0.001)
0.767(0.001)

random
S3  maximin

0.801(0.001
0.841(0.001

0.597(<0.001)

(
(
0.587(<0.001)
(
0.588(<0.001)

)

( )
0.865(<0.001)
( )

)

0.864(<0.001
0.861(0.001)

0.761(0.001)
0.765(0.001)
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0.597(<0.001)
0.587(0.001)

0.863(<0.001)
0.853(0.001)

0.759(0.001)
0.756(0.002)
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Scenario II: similar angles, different magnitudes

Table: VD results (with standard errors in parenthesis) under the estimated
maximin ITR and the ITR obtained by random effects meta-analyses.
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-
Schizophrenia study

Table: ITRs based on maximin-projection learning and random effects
meta-analyses, and their estimated value functions.

Testing Group 1 Group 2 Group 3
group maximin  random maximin random maximin random
0, 0.10 -2.79 0.16 -2.89 0.25 0.11
0, -0.90 -3.15 -0.01 -5.06 -0.003 4.62
05 0.30 -1.25 0.70 3.26 0.68 1.05
IAEYg*(d) 26.25 25.33 29.91 32.04 24.01 14.36
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Some thoughts on why “maximin” works better
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Some thoughts on why “maximin” works better

Random design setting: 01, ...,0c < Fy

Maximin effects

oM = argmax min 0T9g
l6].=1 &€{1,....G}

@ Random effects meta-analyses

9RP12 =4

Compare the expected value difference function with respect to the
group of future patients

E{VD(0611;0")01,...,06,0611 ~ Fo} vs

E{VD(0g1;0%)(61,...,06,0c+1 ~ Fo}
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-
Toy example

9
-

second component of

-1 -0.8 -0.6 .(;;:_St »(D:.;mpgne:t.ZOf 6094 0.6 0.8 1
@ 0°Pt = argmaxy E{VD(0.1;0)|0c+1 ~ Fo} o< E(0]60 ~ Fy)
° 67 =3¢ 1 05/G, [167/116%]l2 — 0% ]l2 = Op(G )
o M (9(@) + 9(1))/2, oM — OOPtHQ = Op(Gfl)

Chengchun Shi (NCSU) Individualized Decision Making 33 /42



Toy example

gL
s
12r o
<
o 1 3t o
5 A
e 08 o
2 QL a
O 06 °
Q a o A
£ > A
3 o4
© 8L
° o
c
Q 02 a
o
2 o
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¢ Maximin
0.2
S R gl 4 Random
sl | I I I
-1 -0.8 -0.6 -Ofi -0.2 0 0.2 0.4 0.6 0.8 1 3 s 5 3 7
first component of (9g Number of groups

@ 0°Pt = argmaxy E{VD(0.1;0)|0c+1 ~ Fo} o< E(0]60 ~ Fy)
e OR — Zgzl 0g/G, ]QR/HQRH2 — goPt||, = OP(G—1/2)
o M oc (B1g) + 01))/2, 0™ — 8% = Op(G ™)
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In general

Assume (A1)-(A3) hold. Then, we have 0" — 0Pt = 0,(G 1) where

goPt — 5(9’9 ~ F9) )
IEC016 ~ Fo)l[2

(A].) minbesupp(l_‘g) bTQOPt > 0

(A2) Vb € supp(Fy), 2(bT§°Pt)§°Pt — b  supp(Fp).
(A3) There exist some finite vectors 6 1,. .., 60p k that satisfy
(i) minpesupp(ry) @7 b= minkea,.. ky 07 0ok, VO with [|0]]2 = 1.
(i) For 1 < k < K and any sufficiently small € > 0, we have
Pro~r, (d(0,600.k) <) = O(e).
(iii) Let © =[o,1,---,00,k] and Zy be some subset of {1,..., K} such that
6°Pt = E*(©z,). Assume vectors in Oz, are linearly independent, each
element in (©7 ©z,) 'z, is nonzero, and 6 € C(O1,),V0 € Fy.
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When (A2) is violated: a bias-variance trade-off
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Summary

@ Proposed a maximin-projection learning to derive a reliable ITR based
on the observed data from different populations with heterogeneity in
optimal individualized decision making

@ Proposed maximin effects:

Meaningful interpretation (maximin value difference & PCD).

Nice geometric characterization (optimal equicorrelated point).
Efficient computation procedure (quadratic programming).

Appealing statistical properties (consistency & asymptotic normality).
Better performance (compared to random effects meta-analyses).
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Individualized
Decision Making

Q1. Individualize or Not?
(Statistical Inference)

High
Dimensional

Q2. Estimate Optimal In-
dividualized Decision Rule
(Estimation) Maximin-Projection

\/

Complex
Data

Learning,

Q3. Include More Covariates?
(Model Selection)
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o PAL preserves the doubly-robustness property of classical

A-learning when p > n
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Individualized
Decision Making

Sparse Random
Projection-based

Q1. Individualize or Not?
(Statistical Inference)

Penalized Least-
quare 016

High
Dimensional

Heterogeneous

Q2. Estimate Optimal In-
dividualized Decision Rule

I

Complex
Data

Maximin-Projection
Learning,
Divide and Conquer
for n~1/3-Estimators,

(Estimation) \’

Q3. Include More Covariates?
(Model Selection)

The proposed test

o Hp : implementing the optimal individualized decision rule is
equivalent to the “one-size-fits-all’ method
e is constructed based on sparse random projections of covariates

o has the same asymptotic power function as the “oracle” test
based on the “optimal” projection matrix
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Individualized
Decision Making

Sparse Random
Projection-based |
Penalized Least-
quare 016

Penalized A-

Q1. Individualize or Not? —

(Statistical Inference)

High
Dimensional

Heterogeneous

Q2. Estimate Optimal In-
dividualized Decision Rule
(Estimation)

I

Complex

Maximin-Projection
Learning,

\ Divide and Conquer
for n~'/3-Estimators,

Data

Q3. Include More Covariates?
(Model Selection)

Construct the confidence interval (Cl) for the mean outcome
under an optimal individualized decision rule (optimal value
function)

o has shown to be difficult in the nonregular cases (Robins, 2004;
Robins and Rotnitzky, 2014).
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Subagging-based
Cl for the Optimal

Sparse Random

Projection-based
Penalized Least-
quare 016

Penalized A-

Individualized
Decision Making

Q1. Individualize or Not? —

(Statistical Inference)

High
Dimensional

Q2. Estimate Optimal In-
dividualized Decision Rule
(Estimation)

Heterogeneous

I

Complex

Maximin-Projection
Learning,

Data

\ Divide and Conquer
for n~'/3-Estimators,

Q3. Include More Covariates?
(Model Selection) Our proposed Cl

o achieves nominal coverage

o is on average shorter than that Cl based on the one-step online
method (Luedtke and van der Laan, 2016) and the m-out-of-n
Bootstrap method (Chakraborty, B., Laber, E. B. and Zhao, 2014)

o is narrower than the Cl based on the “oracle” method which
works as if the optimal individualized decision rule were known
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Softwares

@ ITRSelect: Variable Selection for Optimal Individualized Dynamic
Treatment Regime (version 1.0-1). Available on CRAN.

o ITRLearn: Statistical Learning for Individualized Treatment Regime
(version 1.0-1). Available on CRAN.

e BayesSAE: Bayesian Analysis of Small Area Estimation (version
1.0-2). Available on CRAN.

o simplexreg: Regression Analysis of Proportional Data Using Simplex
Distributions (version 1.3). Available on CRAN.
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Thank you!
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Q-learning

Posit some model h(x, 1) for the baseline.

Solve Z{ah(ng’ng)/ang}{Ygi — hg(Xgj,1g) — Agj(ngﬂg +c)} =0,
J
> AgiXg{ Yo — h(Xegj 11g) — Agi(Xg) B + )} = 0,
J
DD Al Ya — h(Xging) — Ag(XgiBg + o)} = 0.
g J
A-learning

Posit some model w(X, az) for the propensity score, h(x,ng) for the baseline.

Solve Z[W(Xv%){l — (X, ag)I7H{om(X, ag)/0agH{Ag — m(X, ag)} =0,

J

Z{%(ng,ng)/@ng}{ygf — h(Xgjmg) — Agi(X;Bg + )} =0,
ZXg,-{Ag,- — m(Xgj, ag)H Yo — h(Xgj,mg) — Agi(XJ; B + c0)} =0,

> Z{Agj — (Xg, og)H Y — h(Xgjsng) — Agi(XJi Bg + co)} = 0.

y
Chengchun Shi (NCSU)
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Additional simulation results

Table: Biases, standard deviations (in parenthesis) of /™ and coverage

probabilities (CP) of 95% Wald-type confidence intervals for 6M.

Sce | oM oM oy CP(OM)  CP(OM) CP(8Y)
S1  —0.001(0.011)  0.001(0.026)  0.0004(0.045) 95.8%  96.2%  95.3%
$2  —0.002(0.022)  0.001(0.052)  —0.002(0.083) 93.5%  94.0%  96.0%
$3  —0.002(0.018)  0.001(0.042)  —0.001(0.065) 95.7%  95.8%  96.2%
S4  —0.004(0.032) 0.0001(0.078) —0.001(0.115) 93.2%  95.0%  98.5%

Sce ll oy oy oy CP(BY) CP(¥) cCP(6Y)
S1  —0.002(0.036) 0.0002(0.036)  0.0002(0.023)  955%  95.5%  95.3%
S2  —0.009(0.061)  0.003(0.060)  —0.001(0.043) 96.0%  96.0%  93.8%
S3  —0.010(0.091) —0.002(0.089) —0.001(0.033) 93.7%  93.7%  94.5%
S4  —0.029(0.136)  0.034(0.130)  —0.002(0.056) 98.3%  98.3%  95.0%
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Health assessment questionnaire (HAQ) progression data

@ An observational study to investigate the influence of early disease
modifying antirheumatic drug (DMARD) treatment for patients with
recent onset inflammatory polyarthritis (Farragher et al., 2010).

@ 847 patients enrolled from 1990 to 2000.

e Treatments: methotrexate combination (A = 1) v.s. methotrexate
monotherapy (A = 0).

@ Response: reduction in HAQ scores between baseline and 5 years.
o Covariates: number of swollen joints, number of tender joints.

@ Patients enrolled at different times showing heterogeneity; we
considered three groups: 1990 - 1992; 1993 - 1996; 1997 - 2000.

@ Hydroxychloroquine was increasingly used for the methotrexate
combination treatment in the UK.
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Health Assessment Quanstionnaire Data

Table: ITRs based on maximin-projection learning and random effects
meta-analyses, and their estimated value functions.

Testing Group 1 Group 2 Group 3

group maximin  random maximin random maximin random
o, —0.48 0.00 0.61 0.16 —-0.02  —0.01
0> 0.88 0.23 0.79 0.14 1.00 0.10
05 —0.87 —0.12 —2.38 —0.11 —3.08 —0.32

EYg*(d) —0.08 —0.09 -0.05 -0.13 —0.25 —0.25
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