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Maximin-Projection Learning for Individualized

Decision Making with Heterogeneous Data

joint work with Rui Song, Wenbin Lu and Bo Fu

—–Journal of the Royal Statistical Society: Series B (2018), 80, 681-702.
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Individualized treatment regime (ITR): a function maps the covariate
space to the space of available treatment options.

Objective: identify the optimal ITR to reach the best clinical outcome.

Single stage study:

Covariates X : p-dimensional vector.
Treatment A: 1 for the treatment, 0 for the control.
Response Y : assuming larger values are desirable.

Q-function: Q(a, x) = E(Y |A = a,X = x).

Contrast function: τ(x) = Q(1, x)− Q(0, x).

τ (x) > 0τ (x) > 0

a = 1

Yes

a = 1 a = 0

No

a = 0

dopt(x) = I(τ(x) > 0)
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Response Y : assuming larger values are desirable.

Q-function: Q(a, x) = E(Y |A = a,X = x).

Contrast function: τ(x) = Q(1, x)− Q(0, x).

τ (x) > 0

τ (x) > 0

a = 1

Yes

a = 1 a = 0

No

a = 0

dopt(x) = I(τ(x) > 0)
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space to the space of available treatment options.

Objective: identify the optimal ITR to reach the best clinical outcome.

Single stage study:

Covariates X : p-dimensional vector.
Treatment A: 1 for the treatment, 0 for the control.
Response Y : assuming larger values are desirable.

Q-function: Q(a, x) = E(Y |A = a,X = x).

Contrast function: τ(x) = Q(1, x)− Q(0, x).

τ (x) > 0
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Schizophrenia study (Tarrier et al., 2004)

Over 400 patients with schizophrenia enrolled in 3 treatment centres
in England

xxx
xxx

Manchester

xxx
xxx

Liverpool

xxx
xxx

North Nottinghamshire

Patients enrolled at different treatment centres show heterogeneity in
response to treatments (Tarrier et al., 2004; Dunn and Bentall, 2007)

Heterogeneity due to the differences in characteristics (unobserved or
partially observed) of treatment setting across centres

The optimal ITR can vary across different centres
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Schizophrenia study (Tarrier et al., 2004)

Question

How to derive a reliable ITR to the group of future patients (possibly
from a new treatment centre)?

Any groupwise optimal ITR in the observed data might not be optimal
(due to that characteristics explaining heterogeneity are unobserved)

Solution

Provide an overall ITR by aggregating groupwise optimal ITRs
estimated from the observed dataset

How to effectively combine groupwise ITRs?
What is a good criterion for combining ITRs?
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Optimal ITR with a single population

Q-learning (Watkins and Dayan, 1992; Murphy, 2005; Moodie et al.,
2014; Song et al., 2015)

A-learning (Murphy, 2003; Robins, 2004; Schulte et al., 2014)

Value search method (Zhang et al., 2012, 2013)

Outcome weighted learning (OWL, Zhao et al., 2012, 2015)

Decision lists (Zhang et al., 2015, 2017)

Tree-based methods (Laber and Zhao, 2015; Zhu et al., 2017)

Optimal ITR with heterogeneous populations

Why important? Multicentre studies are becoming more and more
popular

Our proposed ITR: accounts for heterogeneity due to different
treatment settings across centres
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Notation

Patients are coming from G groups (treatment centres).

For the g -th group (treatment centre),

Yg : response (larger values are desirable).
Ag : treatment (binary).
Xg : covariates (standardized, E(Xg ) = 0, cov(Xg ) = I ).

Chengchun Shi (NCSU) Individualized Decision Making 11 / 42



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Model group heterogeneity

Groupwise contrast function:

τg (x) = E(Yg |Ag = 1,Xg = x)− E(Yg |Ag = 0,Xg = x)

= xTβg + cg = x̄T θg ,

where x̄ = (xT , 1)T , θg = (βT
g , cg )

T .

Sources of heterogeneity:

cg : Groupwise marginal treatment effect Eτg (Xg ), the average
treatment effect (ATE) of the g -th group
βg : Groupwise individualized treatment effect.
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Idea

Groupwise Optimal ITR: I(τg (x) > 0) = I(x̄T θg > 0)

Recommended ITR: I(x̄T θ > 0) subject to ∥θ∥2 = 1 that achieves
some “optimality”

How to define “optimality”

Define the reward function Rg (θ) given the decision I(x̄T θ > 0).

Maximin effects (maximize the minimum reward)

θM = argmax
∥θ∥2=1

min
g∈{1,...,G}

Rg (θ).

Why “maximin”?

Minimize the risk of the worst-case scenario
Minimax strategy in game theory (Wald, 1945)
Good performance in dealing with data heterogeneity (empirically &
theoretically)
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Recommended ITR: I(x̄T θ > 0) subject to ∥θ∥2 = 1 that achieves
some “optimality”

How to define “optimality”

Define the reward function Rg (θ) given the decision I(x̄T θ > 0).

Maximin effects (maximize the minimum reward)

θM = argmax
∥θ∥2=1

min
g∈{1,...,G}

Rg (θ).

Why “maximin”?

Minimize the risk of the worst-case scenario
Minimax strategy in game theory (Wald, 1945)
Good performance in dealing with data heterogeneity (empirically &
theoretically)
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How to choose reward function

Maximin effects

θM = argmax
∥θ∥2=1

min
g∈{1,...,G}

Rg (θ).

Example (Value Difference (VD))

VDg (θ) = EY ∗
g (d(Xg , θ))− EY ∗

g (0),

where d(Xg , θ) = I(X̄T
g θ > 0).

The maximin effects

θM(1) = argmax
∥θ∥2=1

min
g∈{1,...,G}

VDg (θ).
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How to choose reward function

Example (average Percentage of making Correct Decisions (PCD))

PCDg (θ) = 1− E|I(X̄T
g θg > 0)− I(X̄T

g θ > 0)|,

where X̄g = (XT
g , 1)T .

The maximin effects

θM(2) = argmax
∥θ∥2=1

min
g∈{1,...,G}

PCDg (θ).
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How to choose reward function

Pros

PCD and value difference function are clinically important

Cons

The empirical estimators for the value difference and PCD are
non-smooth and non-concave functionals of θ.

Computationally, the estimating procedure is difficult to implement.

Theoretically, the convergence rates of these maximin estimators are
slower than Op(n

−1/2).
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A toy example

c1 = · · · = cG = 0, X1, . . . ,XG ∼ N(0, Ip). For any θ = (βT , 0)T ,

VDg (θ) = θTg θ/
√
2π.

Maximin-projection learning

θM = argmax
∥θ∥2=1

min
g∈{1,...,G}

θTg θ.

When ∥θ1∥2 = · · · = ∥θG∥2,

θM = argmax
∥θ∥2=1

min
g

θTg θ/∥θg∥2 = argmin
∥θ∥2=1

max
g

∠(θg , θ).

Similar to the maximin correlation approach (Avi-Itzhak et al., 1995;
Lee et al., 2016).
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When ∥θ1∥2 = · · · = ∥θG∥2,
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∥θ∥2=1

min
g

θTg θ/∥θg∥2 = argmin
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max
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∠(θg , θ).

Similar to the maximin correlation approach (Avi-Itzhak et al., 1995;
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Statistical interpretation

Theorem (Equivalence of θM and θM(1))

Assume Xg ’s (after groupwise standardization) are i.i.d. spherically
distributed and c1 = c2 = · · · = cG . Then,

θM = argmax
∥θ∥2=1

min
g∈{1,...,G}

VDg (θ).

Theorem (Equivalence of θM and θM(2))

Assume Xg ’s (after groupwise standardization) are i.i.d. spherically
distributed, c1 = c2 = · · · = cG , and all ∥βg∥2’s are the same. Then,

θM = argmax
∥θ∥2=1

min
g∈{1,...,G}

PCDg (θ).

Only need to focus on θM !
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Geometric characterization

Example: β1 = (1, 0)T , β2 = (cos(60◦), sin(60◦))T , β3 =
(cos(70◦), sin(70◦))T , β4 = (0, 1)T , c1 = c2 = c3 = c4 = 0.
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Figure: Plots of subgroup parameter βg ’s (denoted by the square symbol) and the
maximin effects (denoted by the circle symbol).
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Geometric characterization

Example: β1 = (1, 0)T , β2 = (cos(60◦), sin(60◦))T , β3 =
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Figure: Plots of subgroup parameter βg ’s (denoted by the square symbol) and the
maximin effects (denoted by the circle symbol).
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Equicorrelated point set (Avi-Itzhak et al., 1995)

Define the equicorrelated point set

E(Ψ) =
{
t ∈ Rm|tTΨj = tTΨi , ∀i , j ∈ {1, . . . , q}

}
,

Ψ, an m × q matrix, and the optimal equicorrelated point

E∗(Ψ) = argmax
t∈E(Ψ)
∥t∥2≤1

{
tTΨi , ∀i ∈ {1, . . . , q}

}
.

Lemma

For any Ψ, if 1q ∈ C (ΨT ), then

E∗(Ψ) = {1Tq (ΨTΨ)+1q}−1/2Ψ(ΨTΨ)+1q.
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Theorem

(I) Assume F0 = max∥θ∥2=1ming θ
T θg > 0, then there exists some set

I0 ⊆ {1, . . . ,G} such that

θTg θ
M = F0, ∀g ∈ I0, θTg θ

M > F0, ∀g /∈ I0,

and θM = E∗(ΘI0), where Θ = [θ1, θ2, . . . , θG ].

(II) In addition, we have

θM = {1T|I0|(Θ
T
I0ΘI0)

+1|I0|}
−1/2ΘI0(Θ

T
I0ΘI0)

+1|I0|.

(III) Moreover, if the set of vectors θg , g ∈ I0 is linearly independent, then
a necessary and sufficient condition for θM = E∗(ΘI0) is that each element
in (ΘT

I0ΘI0)
−11|I0| is nonnegative. (Essential to establish statistical

properties of the maximin estimator)
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Theorem

(I) Assume F0 = max∥θ∥2=1ming θ
T θg > 0, then there exists some set

I0 ⊆ {1, . . . ,G} such that

θTg θ
M = F0, ∀g ∈ I0, θTg θ

M > F0, ∀g /∈ I0,

and θM = E∗(ΘI0), where Θ = [θ1, θ2, . . . , θG ].
(II) In addition, we have

θM = {1T|I0|(Θ
T
I0ΘI0)

+1|I0|}
−1/2ΘI0(Θ

T
I0ΘI0)

+1|I0|.

(III) Moreover, if the set of vectors θg , g ∈ I0 is linearly independent, then
a necessary and sufficient condition for θM = E∗(ΘI0) is that each element
in (ΘT

I0ΘI0)
−11|I0| is nonnegative. (Essential to establish statistical

properties of the maximin estimator)
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Theorem

(I) Assume F0 = max∥θ∥2=1ming θ
T θg > 0, then there exists some set

I0 ⊆ {1, . . . ,G} such that

θTg θ
M = F0, ∀g ∈ I0, θTg θ

M > F0, ∀g /∈ I0,
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Estimating procedure

Assume estimators β̂1, . . . , β̂G , ĉ0 (computed based on Q-learning or
A-learning) are available. Let θ̂g = (β̂T

g , ĉ0)
T .

θ̂M = argmax
∥θ∥2=1

min
g∈{1,...,G}

θ̂Tg θ = argmax
∥(βT ,c)∥2=1

min
g∈{1,...,G}

(β̂T
g β + ĉ0c).

Step 1: Concave optimization problem

β̂0 = argmax
∥β∥2≤1

min
g∈{1,...,G}

β̂T
g β.

Lagrange dual problem (QP, Lee et al., 2016):

x̂ = argmin xT B̂T B̂x , subject to 1Tp x = 1, x ≽ 0,

where B̂ = [β̂1, . . . , β̂G ].

β̂0 = B̂ x̂ . When ∥β̂0∥2 > 0, set β̂0 = β̂0/∥β̂0∥2.

Chengchun Shi (NCSU) Individualized Decision Making 23 / 42



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Estimating procedure

Assume estimators β̂1, . . . , β̂G , ĉ0 (computed based on Q-learning or
A-learning) are available. Let θ̂g = (β̂T

g , ĉ0)
T .

θ̂M = argmax
∥θ∥2=1

min
g∈{1,...,G}

θ̂Tg θ = argmax
∥(βT ,c)∥2=1

min
g∈{1,...,G}

(β̂T
g β + ĉ0c).

Step 2: Set κ0 = ming∈{1,...,G} β̂
T
0 β̂g .

If κ0 > 0, set

θ̂M =

(
κ0β̂

T
0√

κ2
0 + ĉ20

,
ĉ0√

κ2
0 + ĉ20

)T

.

Else, set

θ̂M = (0Tp , sgn(ĉ0))
T .

Output d̂(x) = I(x̄T θ̂M > 0).

Chengchun Shi (NCSU) Individualized Decision Making 24 / 42



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Estimating procedure

Assume estimators β̂1, . . . , β̂G , ĉ0 (computed based on Q-learning or
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Output d̂(x) = I(x̄T θ̂M > 0).
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Statistical properties

Theorem (Consistency and rate of convergence)

Let Θ̂ = (θ̂1, . . . , θ̂G ). Under certain conditions, we have with probability
going to 1 that θ̂M equals

{1T|I0|(Θ̂
T
I0Θ̂I0)

−11|I0|}
−1/2Θ̂I0(Θ̂

T
I0Θ̂I0)

−11|I0|.

In addition,

∥θ̂M − θM∥2 = O

(
max
g∈I0

∥θ̂g − θg∥2
)
.

Theorem (Asymptotic normality)

Assume for all subgroup estimators are jointly asymptotically normal.
Then,

√
n(θ̂M − θM) is asymptotically normal.
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Simulation setting

Four groups of patients, each generated according as

Ygj = h(Xgj) + 2AgjX
T
gj βg + εgj ,

Xgj
i .i .d∼ N(0, I4) and εgj

i .i .d∼ N(0, 0.25).

Two baseline models for h: linear and nonlinear.

Two propensity score models for π: constant and probit.

For each setting: subgroup estimator obtained using A-learning based
on a linear model for h and logistic model for π:

1 S1: π correct, h correct,

2 S2: π correct, h wrong,

3 S3: π wrong, h correct,
4 S4: π wrong, h wrong.
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Simulation setting (continued)

Two scenarios for the subgroup parameters (representing different
degrees of heterogeneity):

(I) same magnitudes, different angles
(II) similar angles, different magnitudes
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Competing methods

Random effects meta-analyses (DerSimonian and Laird, 1986;
Jackson et al., 2010; Chen et al., 2012)

Compute θ̂R as a weighted average of θ̂g ’s,

θ̂R =

(
G∑

g=1

(Ω̂g + Ω̂0)
−1

)(
G∑

g=1

(Ω̂g + Ω̂0)
−1θ̂g

)
.

Output I(x̄T θ̂R > 0).

Evaluation: leave-one-group-out cross-validation

Obtain ITR based any of the three training groups.
Evaluate its value difference on the remaining testing group.
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Scenario I: same magnitudes, different angles

Table: VD results (with standard errors in parenthesis) under the estimated
maximin ITR and the ITR obtained by random effects meta-analyses.

Testing group First group Second group Third group Fourth group

S1
random -0.0002(0.001) 0.651(0.001) 0.651(0.001) 0.0005(0.001)
maximin 0.002(0.001) 0.736(0.0004) 0.736(0.0004) 0.003(0.001)

S2
random 0.001(0.001) 0.650(0.001) 0.646(0.001) -0.002(0.002)
maximin 0.005(0.003) 0.734(0.001) 0.734(0.001) 0.002(0.002)

S3
random -0.002(0.002) 0.648(0.002) 0.649(0.001) 0.001(0.002)
maximin -0.0003(0.002) 0.734(0.001) 0.735(0.001) -0.003(0.002)

S4
random -0.002(0.003) 0.638(0.003) 0.647(0.002) 0.008(0.003)
maximin -0.003(0.003) 0.731(0.001) 0.728(0.001) -0.008(0.004)
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Scenario II: similar angles, different magnitudes

Table: VD results (with standard errors in parenthesis) under the estimated
maximin ITR and the ITR obtained by random effects meta-analyses.

Testing group First group Second group Third group Fourth group

S1
random 0.803(<0.001) 0.598(<0.001) 0.865(<0.001) 0.761(<0.001)
maximin 0.847(<0.001) 0.588(<0.001) 0.865(<0.001) 0.769(<0.001)

S2
random 0.803(<0.001) 0.598(<0.001) 0.865(<0.001) 0.762(<0.001)
maximin 0.843(0.001) 0.587(<0.001) 0.863(<0.001) 0.767(0.001)

S3
random 0.801(0.001) 0.597(<0.001) 0.864(<0.001) 0.761(0.001)
maximin 0.841(0.001) 0.588(<0.001) 0.861(0.001) 0.765(0.001)

S4
random 0.804(0.001) 0.597(<0.001) 0.863(<0.001) 0.759(0.001)
maximin 0.826(0.002) 0.587(0.001) 0.853(0.001) 0.756(0.002)
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Schizophrenia study

Table: ITRs based on maximin-projection learning and random effects
meta-analyses, and their estimated value functions.

Testing
group

Group 1 Group 2 Group 3
maximin random maximin random maximin random

θ̂1 0.10 -2.79 0.16 -2.89 0.25 0.11

θ̂2 -0.90 -3.15 -0.01 -5.06 -0.003 4.62

θ̂3 0.30 -1.25 0.70 3.26 0.68 1.05

ÊY ⋆
g (d) 26.25 25.33 29.91 32.04 24.01 14.36
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ÊY ⋆
g (d) 26.25 25.33 29.91 32.04 24.01 14.36

Chengchun Shi (NCSU) Individualized Decision Making 31 / 42



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Some thoughts on why “maximin” works better

Random design setting: θ1, . . . , θG
iid∼ Fθ

Maximin effects

θM = argmax
∥θ∥2=1

min
g∈{1,...,G}

θT θg

Random effects meta-analyses

θ̂R
P→ 1

G

G∑
g=1

θg ≡ θR .

Compare the expected value difference function with respect to the
group of future patients

E{VD(θG+1; θ
M)|θ1, . . . , θG , θG+1 ∼ Fθ} v.s

E{VD(θG+1; θ
R)|θ1, . . . , θG , θG+1 ∼ Fθ}
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Toy example
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θopt = argmaxθ E{VD(θG+1; θ)|θG+1 ∼ Fθ} ∝ E(θ|θ ∼ Fθ)

θR =
∑G

g=1 θg/G , ∥θR/∥θR∥2 − θopt∥2 = Op(G
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θM ∝ (θ(G) + θ(1))/2, ∥θM − θopt∥2 = Op(G
−1)
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In general

Assume (A1)-(A3) hold. Then, we have θM − θopt = Op(G
−1) where

θopt =
E(θ|θ ∼ Fθ)

∥E(θ|θ ∼ Fθ)∥2
.

(A1) minb∈supp(Fθ) b
T θopt > 0.

(A2) ∀b ∈ supp(Fθ), 2(b
T θopt)θopt − b ∈ supp(Fθ).

(A3) There exist some finite vectors θ0,1, . . . , θ0,K that satisfy

(i) minb∈supp(Fθ) θ
Tb = mink∈{1,...,K} θ

T θ0,k , ∀θ with ∥θ∥2 = 1.
(ii) For 1 ≤ k ≤ K and any sufficiently small ε > 0, we have

Prθ∼Fθ
(d(θ, θ0,k) ≤ ε) = O(ε).

(iii) Let Θ = [θ0,1, . . . , θ0,K ] and I0 be some subset of {1, . . . ,K} such that
θopt = E∗(ΘI0). Assume vectors in ΘI0 are linearly independent, each
element in (ΘT

I0
ΘI0)

−11I0 is nonzero, and θ ∈ C (ΘI0), ∀θ ∈ Fθ.

When (A2) is violated: a bias-variance trade-off
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Summary

Proposed a maximin-projection learning to derive a reliable ITR based
on the observed data from different populations with heterogeneity in
optimal individualized decision making

Proposed maximin effects:

Meaningful interpretation (maximin value difference & PCD).
Nice geometric characterization (optimal equicorrelated point).
Efficient computation procedure (quadratic programming).
Appealing statistical properties (consistency & asymptotic normality).
Better performance (compared to random effects meta-analyses).
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tio Test, AOS, accepted

Recursive Online-
Score Estimation

(ROSE), JASA, revised

Partial Penalized Wald,
Score and Likelihood Ra-
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Softwares

ITRSelect: Variable Selection for Optimal Individualized Dynamic
Treatment Regime (version 1.0-1). Available on CRAN.

ITRLearn: Statistical Learning for Individualized Treatment Regime
(version 1.0-1). Available on CRAN.

BayesSAE: Bayesian Analysis of Small Area Estimation (version
1.0-2). Available on CRAN.

simplexreg: Regression Analysis of Proportional Data Using Simplex
Distributions (version 1.3). Available on CRAN.
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Thank you!
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Q-learning
Posit some model h(x , ηg ) for the baseline.

Solve
∑
j

{∂h(Xgj , ηg )/∂ηg}{Ygj − hg (Xgj , ηg )− Agj(X
T
gj βg + c0)} = 0,∑

j

AgjXgj{Ygj − h(Xgj , ηg )− Agj(X
T
gj βg + c0)} = 0,∑

g

∑
j

Agj{Ygj − h(Xgj , ηg )− Agj(X
T
gj βg + c0)} = 0.

A-learning
Posit some model π(X , αg ) for the propensity score, h(x , ηg ) for the baseline.

Solve
∑
j

[π(X , αg ){1− π(X , αg )}]−1{∂π(X , αg )/∂αg}{Agj − π(X , αg )} = 0,∑
j

{∂h(Xgj , ηg )/∂ηg}{Ygj − h(Xgj , ηg )− Agj(X
T
gj βg + c0)} = 0,∑

j

Xgj{Agj − π(Xgj , αg )}{Ygj − h(Xgj , ηg )− Agj(X
T
gj βg + c0)} = 0,∑

g

∑
j

{Agj − π(Xgj , αg )}{Ygj − h(Xgj , ηg )− Agj(X
T
gj βg + c0)} = 0.
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Additional simulation results

Table: Biases, standard deviations (in parenthesis) of θ̂M and coverage
probabilities (CP) of 95% Wald-type confidence intervals for θM .

Sce I θ̂M1 θ̂M2 θ̂M3 CP(θM1 ) CP(θM2 ) CP(θM3 )

S1 −0.001(0.011) 0.001(0.026) 0.0004(0.045) 95.8% 96.2% 95.3%
S2 −0.002(0.022) 0.001(0.052) −0.002(0.083) 93.5% 94.0% 96.0%
S3 −0.002(0.018) 0.001(0.042) −0.001(0.065) 95.7% 95.8% 96.2%
S4 −0.004(0.032) 0.0001(0.078) −0.001(0.115) 93.2% 95.0% 98.5%

Sce II θ̂M1 θ̂M2 θ̂M3 CP(θM1 ) CP(θM2 ) CP(θM3 )

S1 −0.002(0.036) 0.0002(0.036) 0.0002(0.023) 95.5% 95.5% 95.3%
S2 −0.009(0.061) 0.003(0.060) −0.001(0.043) 96.0% 96.0% 93.8%
S3 −0.010(0.091) −0.002(0.089) −0.001(0.033) 93.7% 93.7% 94.5%
S4 −0.029(0.136) 0.034(0.130) −0.002(0.056) 98.3% 98.3% 95.0%
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Health assessment questionnaire (HAQ) progression data

An observational study to investigate the influence of early disease
modifying antirheumatic drug (DMARD) treatment for patients with
recent onset inflammatory polyarthritis (Farragher et al., 2010).

847 patients enrolled from 1990 to 2000.

Treatments: methotrexate combination (A = 1) v.s. methotrexate
monotherapy (A = 0).

Response: reduction in HAQ scores between baseline and 5 years.

Covariates: number of swollen joints, number of tender joints.

Patients enrolled at different times showing heterogeneity; we
considered three groups: 1990 - 1992; 1993 - 1996; 1997 - 2000.

Hydroxychloroquine was increasingly used for the methotrexate
combination treatment in the UK.
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Health Assessment Quanstionnaire Data

Table: ITRs based on maximin-projection learning and random effects
meta-analyses, and their estimated value functions.

Testing
group

Group 1 Group 2 Group 3
maximin random maximin random maximin random

θ̂1 −0.48 0.00 0.61 0.16 −0.02 −0.01

θ̂2 0.88 0.23 0.79 0.14 1.00 0.10

θ̂3 −0.87 −0.12 −2.38 −0.11 −3.08 −0.32

ÊY ⋆
g (d) −0.08 −0.09 -0.05 -0.13 −0.25 −0.25
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