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Developing AI with Reinforcement Learning
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In this talk, we will focus on...

Reinforcement learning in offline real-world applications.

Most works consider developing AI in games (online).

Statistical inference in reinforcement learning.

Is statistical inference useful in reinforcement leaning?
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Sequential decision making

Objective: find an optimal policy that maximizes the cumulative reward
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Reinforcement learning (RL)

RL algorithms: trust region policy optimization (Schulman et al.,
2015), deep Q-network (DQN, Mnih et al., 2015), asynchronous
advantage actor-critic (Minh et al., 2016), quantile regression DQN
(Dabney et al., 2018).

Foundations of RL:

Markov decision process (MDP, Puterman, 1994): ensures
the optimal policy is stationary, and is not history-dependent.

πopt
t depends only on St ∪ {(Sj ,Aj)}j<t only through St ;
πopt
t = πopt for any t.

Markov assumption (MA): conditional on the present, the
future and the past are independent,

St+1 ⊥⊥ {(Sj ,Aj)}j<t |St ,At .

The Markov transition kernel is homogeneous in time.
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RL models

Figure: Causal diagrams for MDPs, HMDPs and POMDPs. The solid lines
represent the causal relationships and the dashed lines indicate the information
needed to implement the optimal policy. {Ht}t denotes latent variables.
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Our contributions

Methodologically
propose a forward-backward learning procedure to test MA;
first work on developing consistent tests for MA in RL;
sequentially apply the proposed test for RL model selection:

For under-fitted models, any stationary policy is not optimal;
For over-fitted models, the estimated policy might be very
noisy due to the inclusion of many irrelevant lagged variables.

Empirically
identify the optimal policy in high-order MDPs;
detect partially observable MDPs.

Theoretically
prove our test controls type-I error under a bidirectional
asymptotic framework.
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Applications in high-order MDPs

Data: the OhioT1DM dataset (Marling & Bunescu, 2018).

Measurements for 6 patients with type I diabetes over 8 weeks.
One-hour interval as a time unit.
State: patients’ time-varying variables, e.g., glucose levels.
Action: to inject insulin or not.
Reward: the Index of Glycemic Control (Rodbard, 2009).
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Applications in high-order MDPs (Cont’d)

Analysis I:

sequentially apply our test to determine the order of MDP;
conclude it is a fourth-order MDP.

Analysis II:

split the data into training/testing samples;
policy optimization based on fitted-Q iteration (Ernst et al.,
2005), by assuming it is a k-th order MDP for k = 1, · · · , 10;
policy evaluation based on fitted-Q evaluation (Le et al., 2019);
use random forest to model the Q-function;
repeat the above procedure to compute the average value of
policies computed under each MDP model assumption.

order 1 2 3 4 5 6 7 8 9 10
value -90.8 -57.5 -63.8 -52.6 -56.2 -60.1 -63.7 -54.9 -65.1 -59.6
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Applications in partially observable MDPs
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Applications in partially observable MDPs (Cont’d)

Empirical rejection rates under the alternative hypothesis (MA is
violated). α = (0.05, 0.1) from left to right.

Empirical rejection rates under the null hypothesis (MA holds).
α = (0.05, 0.1) from left to right.
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Forward-backward learning

Existing approach in time series: Cheng and Hong (2012)

characterize MA based on the notion of conditional
characteristic function (CCF);
use kernel smoother to estimate CCF.

Challenge:

develop a valid test for MA in moderate or high-dimensions
the dimension of the state increases as we concatenate
measurements over multiple time points in order to test for a
high-order MDP.

This motivates our forward-backward learning procedure.
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Forward-backward learning (Cont’d)

Some key components of our algorithm:

To deal with moderate or high-dimensional state space, employ
modern machine learning (ML) algorithms to estimate CCF:

Learn CCF of St+1 given At and St (forward learner);
Learn CCF of (St ,At) given (St+1,At+1) (backward learner);
Develop a random forest-based algorithm to estimate CCF;
Borrow ideas from the quantile random forest algorithm
(Meinshausen, 2006) to facilitate the computation.

To alleviate the bias of ML algorithms, construct doubly-robust
estimating equations by integrating forward and backward learners;

To improve the power, construct a maximum-type test statistic;

To control the type-I error, approximate the distribution of our test
via multiplier bootstrap.
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Bidirectional theory

N the number of trajectories;

T the number of decision points in each trajectory;

bidirectional asymptotics: a framework where either N or T grows to ∞;

large T , small N (mobile health)

large N, small T (some medical studies)

large N, large T (games)
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Bidirectional theory (cont’d)

(C1) Actions are generated by a fixed behavior policy.
(C2) The process {St}t≥0 is exponentially β-mixing.
(C3) The `2 prediction errors of forward and backward learners converge
at a rate faster than (NT )−1/4.

Theorem

Assume (C1)-(C3) hold. Then under some other mild conditions, our test
controls the type-I error asymptotically as either N or T diverges to ∞.
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Thanks!
Our paper is published in ICML 2020.

Paper http://proceedings.mlr.press/v119/shi20c/shi20c.pdf,

Python code TestMDP https://github.com/RunzheStat/TestMDP
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