Testing Mediation Effects using Logic of Boolean Matrices

Lexin Li

Professor Division of Biostatistics & Helen Wills Neuroscience Institute University of California, Berkeley

Outline

- ► talk outline:
 - general overview & scientific motivation
 - problem formulation & literature review
 - hypotheses \rightarrow test statistics \rightarrow testing procedure
 - theoretical guarantees
 - extension to sequential mediation analysis
 - numerical results

thanks:

- NIH R01AG061303
- William Jagust @ UC Berkeley & Helen Wills Neuroscience Institute
- ► Tengfeil Guo @ UC Berkeley & Helen Wills Neuroscience Institute
- Chengchun Shi @ London School of Economics and Political Science

General overview

- neuroimaging analysis is a super exciting area, because
 - scientifically, understanding the inner working of human brains, and their connections with numerous neurological disorders, e.g, Alzheimer's disease, as well as normal aging, is one of the most intriguing questions
 - statistically, an array of diverse statistical problems, constantly calling for new models, theory, algorithms
 - large public neuroimaging databases are becoming available
 - this area is not overly crowded, yet
- my group works on a wide variety of neuroimaging problems:
 - imaging tensor analysis
 - brain connectivity network analysis
 - multimodal neuroimaging analysis
 - new imaging modalities: functional data analysis; ordinary differential equations; point process modeling

Scientific motivation

- ► Alzheimer's disease (AD) and normal aging:
 - AD is an irreversible neurodegenerative disorder, characterized by progressive impairment of cognitive and memory functions, then loss of independent living, and ultimately death
 - the leading form of dementia, and currently affecting 5.8 million American adults aged 65 years or older
 - prevalence continues to grow; projected to reach 13.8 million by 2050
 - there is no effective treatment

scientific questions of interest:

- neurodegeneration measure, often captured as grey matter cortical atrophy, is a well-known biomarker associated with AD
- amyloid-beta and tau are two hallmark pathological proteins believed to be part of the driving mechanism of AD
- question: how age affects cortical thickness then cognitive outcome
- question: how amyloid-beta affects tau deposition then cortical thickness then cognitive outcome

Mediation analysis

- mediation analysis:
 - to identify and explain the mechanism, or pathway, that underlies an observed relationship between an exposure and an outcome variable, through the inclusion of an intermediary variable, known as a mediator
 - facilitate a better understanding of the exposure-outcome mechanism
 - has important intervention consequences, as the intervention may be placed on the mediator instead of the exposure

Inference for mediation analysis

- inference for high-dimensional mediation analysis:
 - question: how to infer the significance of individual mediators?
 - ► challenge: the number of possible paths that go through all combinations of mediators is huge → the total number of potential paths that go through any mediator is super-exponential in the number of mediators

mediation estimation through sparse regularization:

- both can in effect identify important mediators
- but estimation does not explicitly quantify the significance (*p*-value), and does not control the false discovery

Inference for mediation analysis

- mediation inference:
 - either explicitly impose that the mediators are conditionally independent given the exposure, or simply ignore any potential directed paths among the mediators
 - plausible in some applications, but not in others
 - e.g., in neuroimaging, different brain regions influence each other; in genetics, different genes interact with each other
- Chakrabortty et al. (2018):
 - allowed mediator-by-mediator interactions
 - formulated the directed acyclic graph (DAG) structure
 - defined the individual mediation effect of a given mediator as the summation of all the effects of the exposure on the outcome that can be attributed to that mediator
 - established the convergence and confidence interval for their estimator

Inference for mediation analysis

- **what we propose** (in a nutshell):
 - propose a new testing procedure to evaluate the individual mediation effect, while allowing directed paths among the mediators
 - ► construct the test statistic using the logic of Boolean matrices → establish the proper limiting distribution under the null → the asymptotics of the test statistic built on regular matrix operations are difficult to establish
 - Can be naturally coupled with a screening procedure → help scale down the number of potential paths to a moderate level → reduce the variance of the test statistic → enhance the power of the test
 - use a data splitting strategy to ensure a valid type-I error rate control under minimal conditions on the screening
 - devise a decorrelated estimator to reduce potential bias induced by high-dimensional mediators
 - employ multiplier bootstrap to obtain the critical values
 - couple with a multiple testing procedure for FDR control
 - establish the asymptotic size, power, and FDR control, while allowing the number of mediators to diverge to ∞

Gaussian graphical model

- ▶ setup: exposure E/X_0 ; multivariate mediators X_1, \ldots, X_d ; outcome Y/X_{d+1} ; write $\boldsymbol{X} = (E, X_1, \ldots, X_d, Y)^\top \in \mathbb{R}^{d+2}$
- Gaussian graphical model:

$$oldsymbol{X}-oldsymbol{\mu}=oldsymbol{W}(oldsymbol{X}-oldsymbol{\mu})+arepsilon,$$

- $\blacktriangleright \ \mu = E(\mathbf{X}); \ \mathbf{W} \in \mathbb{R}^{(d+2) \times (d+2)}; \ \boldsymbol{\varepsilon} = (\varepsilon_0, \dots, \varepsilon_{d+1})^\top$
- ► W specifies the directional relationships among the variables in X, which can be encoded by a DAG
- $X_i \rightarrow X_j$: X_i is called a parent of X_j , and X_j a child of X_i
- ▶ $X_i \to X_{i_1} \to \ldots \to X_{i_{k-1}} \to X_j$ for some $\{i_k\}_{1 \le l < k}$: X_i is called an ancestor of X_j , and X_j a descendant of X_i .
- X₀ is not the child of any mediator X₁,..., X_d;
 X_{d+1} is not the parent of X₀ nor any mediator X₁,..., X_d
- ▶ the errors ε_i, i = 0,..., d + 1, are jointly normally distributed and independent, and the error variances σ_i² = Var(ε_i), i = 0,..., d + 1, are constant (Peters and Bühlmann, 2014, Yuan et al., 2019)

Hypotheses

▶ total effect: for a directed path $\zeta : X_0 \to X_{i_1} \to \ldots \to X_{i_k} \to X_{d+1}$ for some $\{i_t\}_{1 \le t \le k} \subseteq \{1, \ldots, d\}$, define the total effect of X_0 on X_{d+1} attributed to this path as

$$\omega_{\zeta} = W_{i_1,0} \left(\prod_{t=0}^{k-1} W_{i_{t+1},i_t} \right) W_{d+1,i_k},$$

where $W_{i,j}$ is the (i,j)th entry of W. If such a path does not exist, we have $\omega_{\zeta} = 0$.

• hypotheses: for an individual mediator X_q , q = 1, ..., d,

 $H_0(q): \omega_{\zeta} = 0, \text{ for all } \zeta \text{ that passes through } X_q, \\ H_1(q): \omega_{\zeta} \neq 0, \text{ for some } \zeta \text{ that passes through } X_q.$

when $H_1(q)$ holds, we say X_q is a significant mediator

Hypotheses

equivalent hypotheses:

$$\begin{split} & H_0(q) : 0 \notin \operatorname{ACT}(q, \boldsymbol{W}) \quad \text{or} \quad q \notin \operatorname{ACT}(d+1, \boldsymbol{W}), \\ & H_1(q) : 0 \in \operatorname{ACT}(q, \boldsymbol{W}) \quad \text{and} \quad q \in \operatorname{ACT}(d+1, \boldsymbol{W}). \end{split}$$

where ACT(j, W) denotes the set of true **ancestors** of X_j

• hypotheses we target: for $q_1 = 0, \ldots, d$, $q_2 = 1, \ldots, d+1$,

 $\begin{aligned} & H_0(q_1,q_2): q_1 \notin \operatorname{ACT}(q_2,\boldsymbol{W}), \\ & H_1(q_1,q_2): q_1 \in \operatorname{ACT}(q_2,\boldsymbol{W}). \end{aligned}$

- ▶ the null hypothesis H₀(q) can be decomposed into a union of the two null hypotheses H₀(0, q) and H₀(q, d + 1)
- by the union-intersection principle, max {p(0, q), p(q, d + 1)} is a valid p-value for testing H₀(q)

Hypotheses

alternative definition of a significant mediator (Chakrabortty et al., 2018):

$$egin{aligned} &\mathcal{H}^*_0(q):\sum\omega_\zeta=0,\quad ext{versus}\quad &\mathcal{H}^*_1(q):\sum\omega_\zeta
eq0, \end{aligned}$$

where the summation is taken for all ζ that pass through X_q

the effects along the path ζ may cancel out with each other, resulting in a zero sum, even though there are significant positive and negative mediation effects along ζ

• e.g., for X_2 , two paths, $X_0 \to X_2 \to X_4$ and $X_0 \to X_2 \to X_3 \to X_4$, both pass through X_2 , while the aggregated total effect is $\sum_{\zeta} \omega_{\zeta} = 1 \times \{-1 + (-1) \times (-1)\} = 0$

Test statistics

- (the usual) power of matrices:
 - key observation:

 $H_0(q_1,q_2)$ holds if and only if $(|\boldsymbol{W}|^k)_{q_2,q_1}=0$, for any $k=1,\ldots,d$.

- ▶ a natural test statistic is $\{(|\widehat{\boldsymbol{W}}|^k)_{q_2,q_1}\}_{1 \leq k \leq d}$, where $\widehat{\boldsymbol{W}}$ is some consistent estimator for \boldsymbol{W}
- however, it is difficult to obtain the limiting distribution of $(|\widehat{\boldsymbol{W}}|^k)_{q_2,q_1}$ under $H_0(q_1,q_2)$

Test statistics

- ▶ logic of Boolean matrices: for two real-valued matrices $A_1 = \{a_{1,i,j}\}_{ii} \in \mathbb{R}^{q_1 \times q_2}, A_2 = \{a_{2,i,j}\}_{ii} \in \mathbb{R}^{q_2 \times q_3}$
 - define a new matrix multiplication operator and a new matrix addition operator to replace the usual matrix multiplication and addition
 - define $A_1 \otimes A_2$ to be a $q_1 \times q_3$ matrix whose (i, j)th entry equals $\max_{k \in \{1, \dots, q_2\}} \min(a_{1,i,k}, a_{2,k,j}) \rightarrow$ replace the multiplication operation in the usual matrix multiplication with the minimum operator, and replace the addition operation with the maximum operator
 - ▶ define A₁ ⊕ A₂ to be a q₁ × q₂ matrix whose (i, j)th entry equals max(a_{1,i,j}, a_{2,i,j})
 - when A₁, A₂ are binary matrices, the minimum and maximum operators are equivalent to the logic operators "and" and "or" in Boolean algebra
 - When A₁, A₂ are binary matrices, "⊗" operator is equivalent to the Boolean matrix multiplication operator
 - ▶ when A₁, A₂ are binary matrices, "⊕" operator is equivalent to the Boolean matrix addition operator

Test statistics

- ► logic of Boolean matrices:
 - key observation:

 $H_0(q_1,q_2)$ holds if and only if $(|\boldsymbol{W}|^{(k)})_{q_2,q_1} = 0$, for any $k = 1, \ldots, d$.

• aggregating $|\mathbf{W}|^{(k)}$ for all k-step paths, k = 1, ..., d,

$$\boldsymbol{W}^* = |\boldsymbol{W}| \oplus |\boldsymbol{W}|^{(2)} \oplus \cdots \oplus |\boldsymbol{W}|^{(d)}.$$

 $H_0(q_1,q_2)$ holds if and only if $(\boldsymbol{W}_0^*)_{q_2,q_1}=0$

▶ test statistic: \widehat{W}_{q_2,q_1}^* for $H_0(q_1,q_2)$, where \widehat{W} is some consistent estimator for W

data: let x₁, · · · , x_n denote i.i.d. copies of X

step 1: data splitting

- split the data into two equal halves {x_i}_{i∈I₁} ∪ {x_i}_{i∈I₂}, where I_ℓ is the set of indices of subsamples, ℓ = 1,2
- ensure the resulting test achieves a valid type-I error rate under minimal conditions
- commonly used in statistical testing (Romano and DiCiccio, 2019)
- construct two test statistics based on both halves of data, then combine them
- can also do multiple splits, at the cost of heavier computations

▶ step 2: initial estimation of W

- compute an initial estimator $\widetilde{W}^{(\ell)}$ for W_0 , given each half of the data $\{x_i\}_{i\in \mathcal{I}_\ell}, \ \ell=1,2$
- several choices: Zheng et al. (2018); Yuan et al. (2019)
- a novel characterization of the acyclic constraint:

$$\widetilde{\boldsymbol{W}}^{(\ell)} = \operatorname{argmin}_{\boldsymbol{W} \in \mathbb{R}^{(d+2) \times (d+2)}} \sum_{i \in \mathcal{I}_{\ell}} \|\widetilde{\boldsymbol{x}}_i - \boldsymbol{W}\widetilde{\boldsymbol{x}}_i\|_2^2 + \lambda |\mathcal{I}_{\ell}| \sum_{i,j} |W_{i,j}|$$

subject to trace $\{\exp(VV \circ VV)\} = d + 2.$

- only require W̃^(ℓ) to be consistent to W₀; considerably weaker than requiring W̃^(ℓ) to be selection consistent; i.e.,
 I(W̃⁽¹⁾_{i,j} = 0) = I(W_{0,i,j} = 0) for any i, j = 0,..., d + 1
- ▶ we establish the consistency of $\widetilde{W}^{(\ell)}$ as a by-product, which is not available in Zheng et al. (2018)

step 3: screening

- compute the binary matrix $\widehat{B}^{(\ell)}$ given the initial estimator $\widetilde{W}^{(\ell)}$
- ▶ use the nonzero entries of $\widehat{B}^{(\ell)}$ to determine the support of the subsequent decorrelated estimation step
- ▶ bring down the number of potential paths to a moderate level → reduce the variance of the test statistic → enhance the power of the test

step 4: decorrelated estimation of W using cross-fitting

- ▶ use one set of samples \mathcal{I}_{ℓ} to obtain the initial estimator $\widetilde{W}^{(\ell)}$ and $\widehat{B}^{(\ell)}$, then use the other set of samples \mathcal{I}_{ℓ}^{c} to compute the entries of the decorrelated estimator $\widehat{W}^{(\ell)}$
- reduce the bias of $\widetilde{W}^{(\ell)}$ under the setting of high-dimensional mediators
- guarantee the entry of $\widetilde{W}^{(\ell)}$ is \sqrt{n} -consistent and asymptotically normal

• step 5: bootstrap to compute the critical values

for the test statistic:

$$\sqrt{|\mathcal{I}_{\ell}^{c}|} (\widehat{\boldsymbol{W}}^{*(\ell)})_{q_{1},q_{2}} \leq \max_{(i,j)\in\mathcal{S}(q_{1},q_{2},\widehat{\boldsymbol{B}}^{(\ell)})} \sqrt{|\mathcal{I}_{\ell}^{c}|} |\widehat{W}_{i,j}^{(\ell)} - W_{0,i,j}|,$$

use bootstrap to obtain the critical values of

$$\begin{split} \max_{\substack{(j_1, j_2) \in \mathcal{S}(0, q, \widehat{B}^{(\ell)})}} \sqrt{|\mathcal{I}_{\ell}^c|} \ | \ \widehat{W}_{j_1, j_2}^{(\ell)} - W_{0, j_1, j_2}^{(\ell)}| \\ \max_{\substack{(j_1, j_2) \in \mathcal{S}(q, d+1, \widehat{B}^{(\ell)})}} \sqrt{|\mathcal{I}_{\ell}^c|} \ | \ \widehat{W}_{j_1, j_2}^{(\ell)} - W_{0, j_1, j_2}^{(\ell)}|, \end{split}$$

under the significance level $\alpha/2;$ denote the two critical values by $\widehat{c}^{(\ell)}(0,q)$ and $\widehat{c}^{(\ell)}(q,d+1)$

decision making:

- ▶ reject $H_0(0,q)$ if $\widehat{B}_{q,0}^{*(\ell)}\left\{ |\mathcal{I}_{\ell}^c|^{-1/2} \widehat{c}^{(\ell)}(0,q) \right\} = 1$
- ▶ reject $H_0(q, d+1)$ if $\widehat{B}_{d+1,q}^{*(\ell)} \left\{ |\mathcal{I}_{\ell}^c|^{-1/2} \widehat{c}^{(\ell)}(q, d+1) \right\} = 1$
- ▶ reject the null $H_0(q)$ when $H_0(0,q)$ and $H_0(q,d+1)$ are both rejected
- For each half of the data ℓ = 1, 2, we have made a decision D^(ℓ) regarding H₀(q) → we reject H₀(q) when either D⁽¹⁾ or D⁽²⁾ decides to reject → by Bonferroni's inequality, this yields a valid α-level test

multiple testing:

 adopt the ScreenMin procedure of Djordjilović et al. (2019) for multiple testing and false discovery control

Theoretical guarantees

asymptotic size:

 $\mathbb{P}ig\{H_0(q) ext{ is rejected } \mid H_0(q) ext{ holds}ig\} \leq lpha + o(1).$

asymptotic power:

 $\mathbb{P}\{H_0(q) \text{ is rejected } | H_1(q) \text{ holds}\} \to 1, \quad \text{ as } n \to \infty.$

asymptotic FDR control:

 $FDR(\mathcal{H}) \leq \alpha + o(1)$

consistency of the initial DAG estimator:

• the convergence rate of the initial DAG estimator $\widetilde{W}^{(\ell)}$ obtained from Zheng et al. (2018) is the same as that of the oracle estimator

AD case study 1

- mediation inference:
 - exposure: age; outcome: PACC score; mediators: gray matter cortical thickness of d = 68 brain regions-of-interest (ROIs)
 - n = 389 subjects
 - set FDR level at 10%
- findings:

amyloid negative group	
l-entorhinal	l-precuneus
l-superiortemporal	r-inferiorparietal
r-superiorfrontal	r-superiortemporal

- entorhinal cortex functions as a hub in a widespread network for memory, navigation and the perception of time; one of the most heavily damaged cortices in AD
- precuneus is involved with episodic memory, visuospatial processing, reflections upon self, and aspects of consciousness, and is found to an AD-signature region

Lexin Li

Sequential mediation analysis

- sequential mediation analysis:
 - question: how amyloid-beta affects tau deposition then cortical thickness then cognitive outcome
 - challenge: multiple sets of mediators are sequentially ordered on the potential pathways following certain biological constraints

Sequential mediation analysis

- ▶ setup: exposure E/X_0 ; first set of mediators $X_1 = (X_{11} \dots, X_{1d_1})^\top \in \mathbb{R}^{d_1}$; second set of mediators $X_2 = (X_{21} \dots, X_{2d_2})^\top \in \mathbb{R}^{d_2}$; outcome $Y/X_{d_1+d_2+1}$
- Gaussian graphical model:

$$oldsymbol{X} - oldsymbol{\mu} = oldsymbol{W}(oldsymbol{X} - oldsymbol{\mu}) + arepsilon,$$

decomposition:

$$\boldsymbol{W}_{0} = \begin{pmatrix} 0 & 0_{d_{1}}^{\top} & 0_{d_{2}}^{\top} & 0 \\ \boldsymbol{W}_{0,1} & \boldsymbol{W}_{1,1} & 0_{d_{1} \times d_{2}} & 0_{d_{1}} \\ \boldsymbol{W}_{0,2} & \boldsymbol{W}_{1,2} & \boldsymbol{W}_{2,2} & 0_{d_{2}} \\ \boldsymbol{W}_{0,3} & \boldsymbol{W}_{1,3}^{\top} & \boldsymbol{W}_{2,3}^{\top} & 0 \end{pmatrix} \in \mathbb{R}^{(d_{1}+d_{2}+2)\times(d_{1}+d_{2}+2)},$$

where $W_{0,1} \in \mathbb{R}^{d_1}$, $W_{0,2} \in \mathbb{R}^{d_2}$, $W_{0,3} \in \mathbb{R}$, $W_{1,1} \in \mathbb{R}^{d_1 \times d_1}$, $W_{1,2} \in \mathbb{R}^{d_2 \times d_2}$, $W_{1,3} \in \mathbb{R}^{d_1}$, $W_{2,2} \in \mathbb{R}^{d_2 \times d_2}$, and $W_{2,3} \in \mathbb{R}^{d_2}$

Sequential mediation analysis

- hypotheses: for some $q_1 = 1, \ldots, d_1$, and $q_2 = 1, \ldots, d_2$,
 - H₀(q₁, q₂): There does not exist a path from the exposure E to the outcome Y that passes through some mediator X_{1,q1} in X₁ and some mediator X_{2,q2} in X₂;
 - $H_1(q_1, q_2)$: There exists a path from the exposure E to the outcome Y that passes through some mediator X_{1,q_1} in X_1 and some mediator X_{2,q_2} in X_2 ,
 - H₀ means that, at least one potential pathway denoted by (ii), (iv) and (vi) is completely missing in this diagram
 - other forms of null hypothesis are possible too
- equivalent hypotheses in terms of $W_{0,1}$, $W_{1,1}$, $W_{1,2}$, $W_{2,2}$ and $W_{2,3}$
- estimation of W following the decomposition structure
- mediation inference

AD case study 2

mediation inference:

exposure: amyloid-beta;
 outcome: change of PACC score of two consecutive visits;
 mediator set 1: tau deposition of d₁ = 35 brain ROIs;
 mediator set 2: gray matter cortical thickness of d₂ = 34 brain ROIs

- n = 184 subjects
- set FDR level at 10%

AD case study 2

Thank You!

