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Reinforcement Learning Applications

(a) Games (b) Health Care (c) Ridesharing

(d) Robotics (e) Finance (f) Automated Driving

We focus on applications in mobile health (mHealth) and ridesharing
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Applications in mHealth

• Use of cellphones and wearable devices
in healthcare

• Data: Intern Health Study (NeCamp
et al., 2020)

• Subject: First-year medical interns
working in stressful environments (e.g.,
long work hours and sleep deprivation)

• Objective: Promote physical and
mental well-beings

• Intervention: Determine whether to
send certain text message to a subject
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Applications in mHealth (Cont’d)

• Management of Type-I diabetes

• Subject: Patients with Type-I
diabetes

• Intervention: Determine whether a
patient needs to inject insulin or
not based on their glucose levels,
food intake, exercise intensity

• Data: OhioT1DM dataset (Marling
and Bunescu, 2018)
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Applications in Ridesharing
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Applications in Ridesharing (Cont’d)
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In this talk, we will focus on ...

• Statistical inference in reinforcement learning (RL)

• Is statistical inference useful for RL?
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Project I

Does the Markov Decision Process Fit the Data: Testing for

the Markov Property in Sequential Decision Making
–Joint work with Runzhe Wan, Rui Song, Wenbin Lu and Ling Leng

(ICML, 2020)

Testing Markovanity in Time Series via Deep Generative

Learning
–Joint with Yunzhe Zhou, Lexin Li and Qiwei Yao

(JRSSB, 2023+)
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Sequential Decision Making
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The Agent’s Policy

• The agent implements a mapping πt from the observed data to a probability
distribution over actions at each time step

• The collection of these mappings π = {πt}t is called the agent’s policy:

πt(a|s̄) = Pr(At = a|S̄t = s̄),

where S̄t = (St ,Rt−1,At−1,St−1, · · ·,R0,A0,S0) is the set of observed data
history up to time t.

• History-Dependent Policy: πt depends on S̄t .

• Markov Policy: πt depends on S̄t only through St .

• Stationary Policy: π is Markov & πt is homogeneous in t, i.e., π0 = π1 = · · ·.
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The Agent’s Policy (Cont’d)
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Reinforcement Learning

• RL algorithms: trust region policy optimization (Schulman et al., 2015), deep
Q-network (DQN, Mnih et al., 2015), asynchronous advantage actor-critic (Minh et
al., 2016), quantile regression DQN (Dabney et al., 2018).

• Foundations of RL:
• Markov decision process (MDP, Puterman, 1994): ensures the optimal policy is

stationary , and is not history-dependent.
• Markov assumption (MA): conditional on the present, the future and the past are

independent,

St+1,Rt ⊥⊥ {(Sj ,Aj ,Rj )}j<t |St ,At .

When Rt is a deterministic function of (St ,At ,St+1)

St+1 ⊥⊥ {(Sj ,Aj )}j<t |St ,At .

The Markov transition kernel is homogeneous in time
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Markov Assumption
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Markov Assumption
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RL Models

Figure: Causal diagrams for MDPs, HMDPs & POMDPs. The solid lines characterize the relationships
among the variables and the dashed lines indicate the information needed to implement the optimal policy.
In Model III, {St}t denotes latent variables. 15 / 49



Contributions

• Methodologically
• propose a forward-backward learning procedure to test MA
• first work on developing consistent tests for MA in RL
• sequentially apply the proposed test for RL model selection (e.g., test kth order MDP

for k = 1, 2, · · · )
• critical to offline domains given a historical dataset without online collection:

• For under-fitted models, any stationary policy is not optimal
• For over-fitted models, the estimated policy might be very noisy due to the inclusion of

many irrelevant lagged variables

• Empirically
• identify the optimal policy in high-order MDPs
• detect partially observable MDPs

• Theoretically
• prove our test controls type-I error under a bidirectional asymptotic framework
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Applications in High-Order MDPs

• Data: the OhioT1DM dataset

• Measurements for 6 patients with type
I diabetes over 8 weeks.

• One-hour interval as a time unit.

• State: glucose levels, food intake,
exercise intensity

• Action: to inject insulin or not.

• Reward: the Index of Glycemic
Control (Rodbard, 2009).
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Applications in High-Order MDPs (Cont’d)

• Analysis I:
• sequentially apply our test to determine the order of MDP
• conclude it is a fourth-order MDP

• Analysis II:
• split the data into training/testing samples
• policy optimization based on fitted-Q iteration, by assuming it is a k-th order MDP

for k = 1, · · · , 10
• policy evaluation based on fitted-Q evaluation
• use random forest to model the Q-function
• repeat the above procedure to compute the average value of policies computed under

each MDP model assumption
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Applications in Partially Observable MDPs
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Applications in Partially Observable MDPs (Cont’d)

• Under H1 (MA is violated, alternative).
Significance level = 0.05.

• Under H0 (MA holds, null). Significance
level = 0.05.
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Methodology

• First work to test MA in RL
• Existing approach in time series: Chen and Hong (2012)

• characterize MA based on the notion of conditional characteristic function (CCF)
• use local polynomial regression to estimate CCF

• Challenge:
• develop a valid test for MA in moderate or high-dimensions
• the dimension of the state increases as we concatenate measurements over multiple

time points in order to test for a high-order MDP.

• This motivates our forward-backward learning procedure.
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Methodology (Cont’d)

Some key components of our algorithm:
• To deal with moderate or high-dimensional state space, employ modern machine
learning (ML) algorithms to estimate CCF:

• Learn CCF of St+1 given At and St (forward learner)
• Learn CCF of (St , At) given (St+1, At+1) (backward learner)
• Develop a random forest-based algorithm to estimate CCF
• Borrow ideas from the quantile random forest algorithm (Meinshausen, 2006) to

facilitate the computation

• To alleviate the bias of ML algorithms, construct doubly-robust test statistics by
integrating forward and backward learners;

• To improve the power, consider a maximum-type test statistic;

• To control the type-I error, approximate the distribution of our test via
high-dimensional multiplier bootstrap (Chernozhukov, et al., 2014).
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Bidirectional Theory

• N the number of trajectories
• T the number of decision points per trajectory
• bidirectional asymptotics: a framework allows either N or T → ∞
• large N , small T (Intern Health Study)

• small N , large T (OhioT1DM dataset)

• large N , large T (games)
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Bidirectional Theory (Cont’d)

(C1) Actions are generated by a fixed behavior policy.

(C2) The observed data is exponentially β-mixing.

(C3) The ℓ2 prediction errors of forward and backward learners converge at a rate faster
than (NT )−1/4.

Theorem

Assume (C1)-(C3) hold. Then under some other mild conditions, our test controls the
type-I error asymptotically as either N or T diverges to ∞.
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Some Follow-ups

• Double GANs for conditional
independence testing (JMLR, 2021)

• Testing DAGs via supervised, structural
learning and GANs (JASA, 2023+)

• Testing Markovanity in time series via
deep generative learning (JRSSB,
2023+)

• Derive the convergence rate of MDN

• A robust test for the stationarity
assumption in RL (ICML, 2023)

• Our test helps identify a better policy
in the Intern Health Study
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Project II

Dynamic Causal Effects Evaluation in A/B Testing with a

Reinforcement Learning Framework

Joint work with Xiaoyu Wang, Shikai Luo, Hongtu Zhu, Jieping Ye and Rui Song
——JASA (2023)
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A/B Testing

Taken from
https://towardsdatascience.com/how-to-conduct-a-b-testing-3076074a8458 27 / 49
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Motivation: Order Dispatch

Our project is motivated by the need for comparing the long-term rewards of different
order dispatching policies in ridesharing platforms
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Challenges

1. The existence of carryover effects:
• Under the alternating-time-interval design

• Past actions will affect future outcomes

2. The need for early termination:
• Each experiment takes a considerable time (at most 2 weeks)
• Early termination to save time and budget

3. The need for adaptive randomization:
• Maximize the total reward (e.g., epsilon-greedy)
• Detect the alternative faster

To our knowledge, no existing test has addressed three challenges simultaneously
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Illustration of the Carryover Effects
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Adopting the Closest Driver Policy
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Some Time Later · · ·
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Miss One Order
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Consider a Different Action
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Able to Match All Orders
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Existence of Carryover Effects

past actions → distribution of drivers → future rewards
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Limitations of Existing A/B tests

• Most existing tests cannot detect carryover effects

• Example 1. St ∼ N(0, 0.25),Rt = St + δAt

• Example 2. St = 0.5St−1 + δAt−1 + N(0, 0.25),Rt = St

• H0: The old policy (A = 0) has larger cumulative rewards (δ ≤ 0)

• H1: The new policy (A = 1) has larger cumulative rewards (δ > 0)

Table: Powers of t-test, DML-based test (Chernozhukov et al., 2018) and the proposed test with
T = 500, δ = 0.1 (H1 holds in both examples)

Example 1 t-test 0.76 DML-based test 1.00 our test 0.98

Example 2 t-test 0.04 DML-based test 0.06 our test 0.73
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Contributions and Advances of Our Proposal
• Introduce an RL framework for A/B testing

1. At−1 impacts Rt indirectly through its effect on St
2. St shall include important mediators between At−1 and Rt

• Most existing works require the independence assumption
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Contributions and Advances (Cont’d)

Propose a test procedure for comparing long-term rewards of two policies

1. allows for sequential monitoring

2. allows for online updating

3. applicable to a wide range of designs, including the Markov design,
alternating-time-interval design and adaptive design
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Methodology
• Apply temporal difference (TD)

learning with sieve method for
value evaluation

• Provide uncertainty quantification
(Shi et al., 2022, JRSSB)

• Adopt the α-spending approach (Lan &
DeMets, 1983) for sequential monitoring

• Develop a bootstrap-assisted procedure
for determining the stopping boundarya

aThe numerical integration method designed for
classical sequential tests is not applicable in adaptive
design, due to the carryover effects
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Theory

Theorem (Validity and Consistency)

Under the Markov, alternating-time-interval or adaptive design, the proposed test can
control type-I error and can detect local alternative hypotheses.

Theorem (Undersmoothing and Efficiency)

Suppose sieve method is used for function approximation in temporal difference learning.

1. Undersmoothing is not needed to guarantee that the policy value estimator has a
tractable limiting distribution.

2. The final policy value estimator is semiparametrically efficient.

• The bias of the policy value estimator decays at a faster rate than the pointwise bias
of the sieve estimator (Shen 1997; Newey et al, 1998)

• The proposed test will not be overly sensitive to the number of basis functions
• Cross-validation can be employed to select the basis functions
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Application to Ridesharing Platform

• Data: a given city from December 3rd to 16th (two weeks)

• 30 minutes as one time unit, sample size = 672
• State:

1. number of drivers (supply)
2. number of requests (demand)
3. supply and demand equilibrium metric (mediator)

• Action: new policy A = 1 v.s. old A = 0

• Reward: drivers’ income

• The new policy is expected to have better performance
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Application to Ridesharing Platform (Cont’d)
• The proposed test
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Test Stat
Rej. Boundary

• t-test: fail to reject H0 in A/B experiment with p-value 0.18
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Some Follow-ups

• A multi-agent RL framework for A/B
testing (AOAS, JRSSB, 2023)

• Optimal experimental designs for
A/B testing (NeurIPS, 2023; Wen et
al., 2024)

Figure: Boxplots of the RMSEs of various
ATE estimators under different designs in a
real-data-based simulator
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Project III

Deeply-Debiased Off-Policy Interval Estimation

joint work with Runzhe Wan, Victor Chernozhukov, and Rui Song
——ICML, 2021 (long talk, top 3% of submissions)
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Off-Policy Evaluation

• Objective: Evaluate the impact of a target policy offline using historical data
generated from a different behavior policy and provide rigorous uncertainty
quantification (healthcare, automated driving, ridesharing, robotics, e.g.)

• Consider the reinforcement learning (e.g., MDP) setting

• Many existing methods focus on providing point estimators

• Main idea: Develop a deeply-debiasing process using higher order influence
function (Robins et al., 2017)
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Method
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Some Follow-ups

• Causal RL: OPE in confounded
MDPs/POMDPs (JASA, 2022+;
ICML 2022, 2023)

• OPE in doubly inhomogeneous
environments (Bian et al., 2023)

• An RL framework for dynamic
mediation analysis (ICML, 2023; Luo
et al. 2023)

• IDE: A1 → R1

• IME: A1 → M1 → R1

• DDE: A0 → S1 → R1

• DME: A0 → M0 → S1 → R1
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Thank You!

,My RL short course ,My personal website
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callmespring.github.io
callmespring.github.io

