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In this talk, we will focus on...

e Directed acyclic graph (DAG) is an important tool to
characterize pairwise directional relations.

(a) Genetics (b) Neuroscience (c) Tech Company

@ It leads to causal interpretations when the no unmeasured
confounders assumption holds.

N
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—Taken from Brankovic et al. (2015)

@ Edges are unidirectional

@ No directed cycles



Existing literature on DAG estimation

o Challenge: the DAG constraint
@ Statistics
o PC algorithm (Spirtes et al., 2000)
o (o penalization (van de Geer & Biihlmann, 2013)
e Surrogate constraint (Yuan et al., 2019)
@ Computer science
Continuous optimization (Zheng et al., 2018)
Variational autoencoder (Yu et al., 2019)
Neural networks (Zheng et al., 2020)
Reinforcement learning (Zhu et al., 2020)
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Existing literature on DAG inference

e DAG inference (e.g., hypothesis testing) has been less
explored.

@ Some existing work focused on linear DAGs.

o De-biased inference (Jankova and van de Geer, 2019)
o Constrained likelihood ratio test (Li, et al., 2020)

@ Objective: develop inference methods for general DAGs in
high-dimensions.
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Our proposal: SUGAR

@ Challenge: nonlinearity & high-dimensionality

@ Proposal: employ modern machine learning techniques (e.g.,
deep neural networks)

o DAG Structure learning based on neural networks or
reinforcement learning

o sUpervised learning based on neural networks

o Distributional generator based on Generative AdveRsarial
networks (GANs, Goodfellow et al., 2014)
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Problem formulation

e DAG model: Additive noise model (Peters et al., 2014)
Xi = fi(Xea;) + ¢,

where X; denotes the jth node in the DAG.
Ensures identifiability under mild conditions.

o Testing hypotheses:

Ho(j, k) : k ¢ PA; vs Hi(j, k) : k € PA;.

e Data: {Xf7t,j}i7f,j
e / indexes the subject;
e t indexes the time point;
e j indexes the node.



A key quantity /(j, k| M, h) defined as

E{X; — E(X X =113 ) HA Xk, Xt xy) — ELA(Xk Xova— i) I X m— iy H-

Under certain assumptions, Ho(j, k) holds if and only if there
exists some M such that j ¢ M, PA;j € M, M N DS; =0,

1(j, klM, h) =0, Vh.




Main idea (Cont'd)

@ Test statistic

o Construct a series of measures {/(j, k|M, hp) : 1 < b < B}
e Standardize these measures and take the maximum

@ The main algorithm

o The set M that satisfies the desired condition (DAG
structural learning)

o The conditional mean function E(X;|Xy(—{x}) (Supervised
learning)

o The functional maps each hy, to E{hy(Xx, Xa1— i3 ) I Xm— (i1 }
(Generative adversarial networks)

e Couple three learners with data-splitting and cross-fitting to
ensure the validity of the test (Chernozhukov et al., 2018)



Step 1: neural structural learning (Zheng et al., 2020)

o Use a multilayer perceptron (MLP) to model nonlinearity

@ Use a novel characterization of the DAG constraint
trace{exp(W o W)} = dimension of the DAG,

W is the coefficient matrix in the first layer.

e Compute @j and set M = @j —{k}.

@ Requires order consistency, weaker than DAG selection
consistency.
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Step 2: deep learning

@ Use the Scikit-learn MLP regressor to learn the conditional
mean function
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Step 3: generative adversarial networks

o hp = E{hp(Xi; Xpa—k3) [ Xm— k1 }
@ Naive solution: separately apply supervised learning B times.
Computationally intensive for large B.
@ Learn a distributional generator
o Input: Xp(_gx}
e Output: {X,Em) M.

e Minimize the discrepancy between Xy |Xn—x and X,Em)|XM_k
o Approximate E{hp(Xx, Xp— (1) [ Xm—{iy } by

M

1 m

o Z hb(X1£ )aXMf{k})
m=1
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Step 3: generative adversarial networks (Cont'd)

Generative Adversarial
Network

Real
Samples

Latent

Space
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Fine Tune Training
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@ We use the Sinkhorn GANs (Cuturi, 2013; Genevay et al.,
2016)
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Simulations

Competing tests
o Likelihood ratio test (LRT, Li et al., 2020)

e Doubly robust test (DRT), a hybrid test that combines our
proposal with double regression conditional independence test
(Shah and Peters, 2018)

Settings
@ Nonlinear associations
e (Dimension, Sparsity) = (50,0.1), (100,0.04), (150, 0.02)
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Simulations (Cont'd)

Edge j=35, k=5 j=35, k=31 j=40, k=16
Hypothesis Ho Ho Ho
Method | SUGAR | DRT | LRT | SUGAR | DRT | LRT | SUGAR | DRT | LRT
a=0.05 | 0.050 |{0.108|1.000| 0.012 |0.068|0.316| 0.016 |0.016 | 1.000
«=0.10 | 0.078 |0.154|1.000| 0.032 |0.098|0.412| 0.032 |0.030 | 1.000
Edge =45, k=14 =45, k=15 =50, k=14
Hypothesis Ho Ho Ho
Method | SUGAR | DRT | LRT | SUGAR | DRT | LRT | SUGAR | DRT | LRT
a=0.05 | 0.014 |0.026|1.000| 0.032 |0.054|0.954| 0.030 |0.096 | 1.000
«=0.10 | 0.030 |0.050|1.000| 0.058 |0.092|0.964| 0.046 |0.126 | 1.000
Edge j=35, k=4 j=35, k=30 j=40, k=15
Hypothesis H1 Hq Hi
Method | SUGAR | DRT | LRT | SUGAR | DRT | LRT | SUGAR | DRT | LRT
a=0.05 | 0534 |[0.082|1.000| 0.992 |0.728|0.204| 0.550 |0.204 | 0.102
a=0.10 | 0.546 |0.126|1.000| 0.992 |0.818|0.290| 0.550 |0.264 | 0.180
Edge j=45, k=12 j=45, k=13 j=50, k=13
Hypothesis Hi Hi Hi
Method |SUGAR | DRT | LRT | SUGAR | DRT | LRT | SUGAR | DRT | LRT
a=0.05 | 0946 |0.524|0.988| 0.808 |0.248 |0.832| 0.670 |0.188|0.730
a=0.10 | 0.948 |0.616|0.996| 0.816 |0.318|0.870| 0.672 |0.252|0.824
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Brain effective connectivity analysis

Data: Human Connectome Project (Van Essen et al., 2013)
Objective: understand brain connectivity patterns of adults

Subjects: individuals that undertook a story-math task

N =28, T =316, d = 127 regions from 4 functional modules
auditory

visual

frontoparietal task control

default mode

These modules are believed to be involved in language
processing and problem solving task (Barch et al., 2013)

16 /20



effective connectivity analysis (Cont'd)

Auditory Default mode Visual Fronto-parietal
(13) (58) (31) (25)
low high low high low high low high
Auditory

(13) 20 17 0 0 0 1 2 0
Default mode

(58) 0 0 68 46 3 2 11 23

Visual

(31) 0 0 3 2 56 46 0 1
Fronto-parietal

(25) 2 1 11 23 0 1 22 27

@ More within-module connections than between-module
connections

@ More within-module connections for the frontoparietal task
control module for the high-performance subjects than the
low-performance subjects
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Bidirectional theories

N the number of subjects;
T the number of time points;

bidirectional asymptotics: a framework where either N or T grows to oo;

large T, small N (e.g., neuroimaging)
N

@ large N, small T (e.g., genetics)
T

@ large N, large T 18720



Bidirectional theories (Cont'd)

Theorem (Size)

Under certain mild conditions, our test controls the type-I error
asymptotically as either N or T diverges to infinity.

\

Theorem (Power)

Under certain mild conditions, the power of our test diverges to 1
as either N or T diverges to infinity.

A\

Theorem (Order consistency)

Under certain mild conditions, the neural structural learning
algorithm can consistently identify the order of the DAG, as either
N or T diverges to infinity.
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@ Preprint: https://arxiv.org/pdf/2106.01474.pdf

Thank you! ®
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