From Theory to Practice: Challenges in Real-World Reinforcement Learning

Chengchun Shi

Associate Professor of Data Science London School of Economics and Political Science

Reinforcement Learning (RL)

Andrew Barto and Richard Sutton Receive A.M. Turing Award

The scientists received computing's highest honor for developing the theoretical foundations of reinforcement learning, a key method for many types of AI.

Developing AI with RL

Video Games Go

RL Applications

Mobile health

Ride-sharing

Psychology

Large language models

Deep brain stimulation

Mobile Heath (mHealth)

- Use of cellphones and wearable devices in healthcare
- Data: Intern Health Study (NeCamp et al., 2020)
- **Subject**: First-year medical interns working in stressful environments (e.g., long work hours and sleep deprivation)
- Objective: Promote physical and mental well-beings
- **Intervention**: Determine whether to send certain text message to a subject

Deep Brain Stimulation

Ridesharing

Ridesharing (Cont'd)

Large Language Models (LLM)

Reinforcement Learning from Human Feedback

Deep Reinforcement Learning from Human Preferences			Training language models to follow instructions with human feedback	
			Jan Leike* Ryan Lowe* Open∧I	
First introduction to deep RLHF			First successful application of RLHF to LLM	

Reinforcement Learning with Verifiable Rewards

DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models

Zhihong Shao^{1,2*†}, Peiyi Wang^{1,3*†}, Qihao Zhu^{1,3*†}, Runxin Xu¹, Junxiao Song¹ Xiao Bi¹, Haowei Zhang¹, Mingchuan Zhang¹, Y.K. Li¹, Y. Wu¹, Daya Guo¹*

¹DeepSeek-AI, ²Tsinghua University, ³Peking University

{zhihongshao,wangpeiyi,zhuqh,guoday}@deepseek.com https://github.com/deepseek-ai/DeepSeek-Math

What Is RL?

Objective: find an optimal policy that maximizes the cumulative reward

Many RL Algorithms Were Proposed...

But far fewer have found successful applications in healthcare

Gap between Theory & Practice

- Action is well-defined in most applications
- So is **reward** (LLM being one exception)
- Can we identify a proper **state**?

The main challenge

Gap between Theory & Practice

Action is well-defined in most applications

 How to identify the state

 So is reward (LLM being one exception)

 Gan we identify a proper state?
 It depends

 Casual RL

Gap between Theory & Practice

Action is well-defined in most applications

- RL is inherently a causal inference problem.
- Causal inference answers *what if* questions:
 - What would happen under different interventions?
- Similarly, RL asks what if we adopt this policy?
 - How will it affect the expected return?
- Value functions in RL is closely related to potential outcomes in causal inference

How to Identify the State

Rule 1: States be collected prior to actions and rewards

• Assumption 1: $S_t \rightarrow A_t/R_p$ not the other way around

Rule 2: States be chosen to make the system an MDP

Rule 2: States be chosen to make the system an MDP

Assumption 2(a): Markov assumption

Rule 2: States be chosen to make the system an MDP

- Assumption 2(a): Markov assumption
- Assumption 2(b): Time-homogeneity assumption

Double-E procedure: (Expansion & Elimination)

Double-E procedure: (Expansion & Elimination)

In DQN, state is a stack of 4 most recent frames (Mnih, et al., 2015, Nature)

Double-E procedure: (Expansion & Elimination)

Test the Markov assumption (Chen and Hong, et al., 2012, *Econometric Theory*; Shi et al., 2020, *ICML*; Zhou et al., 2023)

Double-E procedure: (Expansion & Elimination)

If rejected: MA does not hold

Test the Markov assumption (Chen and Hong, et al., 2012, *Econometric Theory*; Shi et al., 2020, *ICML*; Zhou et al., 2023)

Double-E procedure: (Expansion & Elimination)

If rejected: MA does not hold

Test the Markov assumption (Chen and Hong, et al., 2012, *Econometric Theory*; Shi et al., 2020, *ICML*; Zhou et al., 2023)

Double-E procedure: (Expansion & Elimination)

- Model irrelevance abstraction (Li et al., 2006, AI&M)
- Markov state abstraction (Allen et al., 2021, NeurIPS)

Double-E procedure: (Expansion & Elimination)

Approach 1: Include time index in the state

- Day of week (e.g., Monday, Friday)
- Time of day (e.g., morning, afternoon)

Approach 1: Include time index in the state

- Day of week (e.g., Monday, Friday)
- Time of day (e.g., morning, afternoon)

Approach 2: Change point detection

Test time-homogeneity (Padakandla, et al., 2020, Applied Intelligence; Alegre et al., 2021, AAMAS; Wang, et al., 2023, ICML; Li et al., 2025, AoS)

Approach 1: Include time index in the state

- Day of week (e.g., Monday, Friday)
- Time of day (e.g., morning, afternoon)

Approach 2: Change point detection

Not rejected. Combine more data $t = T - \kappa_4 \qquad t = T - \kappa_3 \qquad t = T - \kappa_2 \qquad t = T - \kappa_1 \qquad t = T$

Test time-homogeneity (Padakandla, et al., 2020, Applied Intelligence; Alegre et al., 2021, AAMAS; Wang, et al., 2023, ICML; Li et al., 2025, AoS)

Approach 1: Include time index in the state

- Day of week (e.g., Monday, Friday)
- Time of day (e.g., morning, afternoon)

Approach 2: Change point detection

Not rejected. Combine more data

Test time-homogeneity (Padakandla, et al., 2020, Applied Intelligence; Alegre et al., 2021, AAMAS; Wang, et al., 2023, ICML; Li et al., 2025, AoS)

Rule 3: States be chosen to contain all confounders

Assumption 3: No unmeasured confounders

Rule 4: All Subjects Possess Same Markov Transition Function

Approach 1: Include baseline information in the state

Approach 2: Clustering (Chen et al., 2025, JASA)

Approach 3: Transfer learning

Causal RL

Confounded POMDPs:

- Tennenholtz et al. (2020, AAAI)
- Nair and Jiang (2021, Arxiv)
- Shi et al. (2022, *ICML*)
- Bennett and Kallus (2023, OR)

Confounded MDPs:

- Wang et al. (2021, *NeurIPS*)
- Xu et al. (2023, ICML)
- Shi et al. (2024, *JASA*)
- Yu et al. (2024, NeurIPS)

Summary

Topics in RL		Topics in Statistics
• Offline policy optimization (Levine et al., 2022)	\longrightarrow	• Estimation
• Off-policy evaluation (Uehara et al., 2022)	\longrightarrow	• Confidence interval construction
• Non-Markovanity (Shi et al., 2020)	\longrightarrow	Hypothesis testing
• Non-Stationary RL (Li et al., 2025)	\longrightarrow	Changepoint detection
• Causal RL (Tennenholtz et al., 2020)	\longrightarrow	Causal inference
• Behavior policy search (Hanna et al., 2017, 2024)	\longrightarrow	Design of experiments
• RL from human feedback (Ouyang et al., 2022)	─	• Ranking models
• State abstraction (Li et al., 2006)	─	• Dimension reduction

Thank You!

