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Reinforcement Learning (RL)

Andrew Barto and
Richard Sutton Receive
AM. Turing Award

The scientists received computing’s highest
honor for developing the theoretical
foundations of reinforcement learning,

a key method for many types of Al i«
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Developing Al with RL
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RL Applications

Ride-sharing
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Large language
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models
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Mobile Heath (mHealth)

® Use of cellphones and wearable devices
in healthcare

e Data: Intern Health Study (NeCamp
et al., 2020)

® Subject: First-year medical interns
working in stressful environments (e.g.,
long work hours and sleep deprivation)

® Objective: Promote physical and
mental well-beings

¢ |Intervention: Determine whether to
send certain text message to a subject

1:31PM

Dashboard

e IS

(i) App Dashboard

On a scale of 1-10 how
was your mood today?

Cance!
a

(iil) Notifications

(ii) Mood EMA
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Deep Brain Stimulation

PD Prevalence DBS device:
2,500 - Medtronic RC+S
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@ Current clinical practice: Can we do better?
v\!., Continuous DBS (cDBS) Adaptive DBS (aDBS)
. Parkinson's Disease

ﬁ DBS parameter unchanged

Tremor

) .
Rigidity 'y >
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Changing DBS parameter

Time Time

Postural
instability

Bradykinesia
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Ridesharing

Enterprise

a—y
Car Sharing  Bike & E- Bike  Minibus

B L
Clean Energy Public Bus
Solutions Mgmt System

@ 10678+ %4 40billion+

vehicle trajectory data/day data processed/day routing requests/day

Trips/year

(91 15billion+

location points/day
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Ridesharing (Cont’d)

Supply-Demand Forecasting g
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Large Language Models (LLM)

Pre-training

Massive
EBEEE autoregressive
e.g., books xt-token
wikipedia NERTIORS
prediction 3290 464 262 2251413

@ X: a sentence or prompt.
@ Y responses.

o Z: Z =LV v(1)
represents the resulting
human feedback

Post-training

X: What is the capital of UK?

supervised
answers fine-tuning
Y: London.
Human X: What is the capital of UK?
— )
preference : .
data reinforcement learning

from human feedback 1) @
Y*V: France. Y**: London.

9/36



Reinforcement Learning from Human Feedback

2017

2022

Deep Reinforcement Learning
from Human Preferences

Training language models to follow instructions
with human feedback

Paul F Christiano Jan Leike
OpenAl DeepMind
paul@openai.com leike@google.com

Tom B Brown
nottombrown@gmail.com

Miljan Martic
DeepMind
miljanm@google.com

Shane Legg Dario Amodei
DeepMind OpenAl
legg@google. com damodei@openai . com

First introduction to deep RLHF

Long Ouyang™ Jeff Wu*  Xu Jiang*  Diogo Almeida®  Carroll L. Wainwright*

Pamela Mishkin*  Chong Zhang  Sandhini Agarwal Katarina Slama  Alex Ray

John Schulman Jacob Hilton Fraser Kelton Luke Miller Maddie Simens
Amanda Askell Peter Welinder Paul Christiano*!
Jan Leike* Ryan Lowe*
OpenAl

First successful application of RLHF to LLM
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Reinforcement Learning with Verifiable Rewards

Question

how many steps does it take to get
an elephant into a refrigerator?

!

( Step 1: Open the refrigerator

Step 2: Put the elephant into J\ Reason
the refrlgera(or )/ steps

( Step 3: Close the refrigerator

Final

Three steps
answer

@' deepsecelk

DeepSeekMath: Pushing the Limits of Mathematical
Reasoning in Open Language Models

Zhihong Shaol2*f, Peiyi Wangw”, Qihao Zhu!?**, Runxin Xu', Junxiao Song1
Xiao Bi!, Haowei Zhang!, Mingchuan Zhang!, YX. Li!, Y. Wu!, Daya Guo'*

1DeepSeek-Al, 2Tsinghua University, >Peking University

{zhihongshao,wangpeiyi,zhugh,guoday}@deepseek.com
https://github.com/deepseek-ai/DeepSeek-Math
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What Is RL?

Time t-1 Time t Time t+1
? ? ) 4
Agent
- - -
Action R,_, Action R, Action R,
Ay Reward A, Reward A Reward .
Environment\ _— \ _— \{/ —_—
State S,_, State S, State S,

Objective: find an optimal policy that maximizes the cumulative reward
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Many RL Algorithms Were Proposed...

Monte Carlo
Tree Search

Model-based R

Iteration Iteration
Fynamic Programmina

Temporal Difference
e.g., Q-Learning

<

DQN

Monte Carlo

Model-free RL

Evaluation Direct Method
Sampling
Method Double Robust

But far fewer have found successful applications in healthcare

Actor-Critic

Policy-based RL

Trust Region Policy

Optimization
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Gap between Theory & Practice

*Action is well-defined in most applications

* So is reward (LLM being one exception)

Can we identify a proper state?

The main challenge
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Gap between Theory & Practice

*Action is well-defined in most applications
* So is reward (LLM being one exception) Yes

* Can we identify a proper state?

How to identify the state

It depends

* Hypothesis testing

« State abstraction

— similar to confounder
selection in causal inference

No

Casual RL
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Gap between Theory & Practice

*Action is well-defined in most applications

* So is reward (LLM being one exception) Yes * Hypothesis testing

« State abstraction
* Can we identify a proper state?
It depends

No Casual RL

¢ RL is inherently a causal inference problem.
¢ Causal inference answers what if questions:
e What would happen under different interventions?
¢ Similarly, RL asks what if we adopt this policy?
e How will it affect the expected return?
¢ Value functions in RL is closely related to potential outcomes in causal inference
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How to ldentify the State

Rule 1: States be collected prior to actions and rewards

State VA | l
=2 -1 t t+1 t+2

Action | I V22222) |
=2 =1 t t+1 t+2
Reward | | lz) |>
=2 =1 t t+1 t+2

e Assumption 1: S, —» A,/R, not the other way around
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How to Identify the State (Cont’d)

Rule 2: States be chosen to make the system an MDP
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How to Identify the State (Cont’d)

Rule 2: States be chosen to make the system an MDP

e Assumption 2(a): Markov assumption

19/36



How to Identify the State (Cont’d)

Rule 2: States be chosen to make the system an MDP

éybb—l

® Assumption 2(a): Markov assumption
e Assumption 2(b): Time-homogeneity assumption

20/36



To Meet Assumptions 2(a): Markovanity

Double-E procedure: (Expansion & Elimination)

: Expansion @ Elimination c
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To Meet Assumptions 2(a): Markovanity

Double-E procedure: (Expansion & Elimination)

SCORE 180 LvES mim mls
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In DQN, state is a stack of 4 most recent frames (Mnih, et al., 2015, Nature)
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To Meet Assumptions 2(a): Markovanity

Double-E procedure: (Expansion & Elimination)

W
Observation I I 7 »
t-3 t—2 t—1 l t t+1

State

Action I I I I I>
-3 t—2 t—1 t t+1
Reward I I I | I>
t—3 t—2 t—1 t t+1

Test the Markov assumption (Chen and Hong, et al., 2012, Econometric Theory;
Shi et al., 2020, ICML; Zhou et al., 2023)
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To Meet Assumptions 2(a): Markovanity

Double-E procedure: (Expansion & Elimination)

Observation | I lrt?) |:
t-3 t—2 \1‘1 ¢ r+1
Stat
Action | V27214 State | |>
3 -2 y t t+1
V%
Reward | W22 | |>
3 =2 t—1 t 1+1

If rejected: MA does not hold

Test the Markov assumption (Chen and Hong, et al., 2012, Econometric Theory;
Shi et al., 2020, ICML; Zhou et al., 2023)
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To Meet Assumptions 2(a): Markovanity

Double-E procedure: (Expansion & Elimination)

Observation Vmmnz2; i zzziiiiZ2Zza |:
- =2 KIA l 1 1+1
Action 20/ State | | >
B t_z/t_/‘ t t+1
V% 0070 | |
Reward >
3 =2 t—1 t 1+1

If rejected: MA does not hold

Test the Markov assumption (Chen and Hong, et al., 2012, Econometric Theory;
Shi et al., 2020, ICML; Zhou et al., 2023)
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To Meet Assumptions 2(a): Markovanity

Double-E procedure: (Expansion & Elimination)

State
Abstraction

Conceptually
similar
to dimension St
reduction

* Model irrelevance abstraction (Li et al., 2006, AI&M)

» Markov state abstraction (Allen et al., 2021, NeurlPS)
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To Meet Assumptions 2(a): Markovanity

Double-E procedure: (Expansion & Elimination)

Hao et al. (2024; Arxiv, 2406.19531)
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To Meet Assumption 2(b): Time-homogeneity

Approach 1: Include time index in the state

 Day of week (e.g., Monday, Friday)

 Time of day (e.g., morning, afternoon)
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To Meet Assumption 2(b): Time-homogeneity

Approach 1: Include time index in the state

®Day of week (e.g., Monday, Friday)

o Time of day (e.g., morning, afternoon)

Approach 2: Change point detection

Hypothesis Testing

»

t=T—-x4 t=T-K3 t=T—-x t=T—-xK t=T

Test time-homogeneity (Padakandla, et al., 2020, Applied Intelligence;
Alegre et al., 2021, AAMAS; Wang, et al., 2023, ICML; Li et al., 2025, AoS)
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To Meet Assumption 2(b): Time-homogeneity

Approach 1: Include time index in the state

®Day of week (e.g., Monday, Friday)

o Time of day (e.g., morning, afternoon)

Approach 2: Change point detection

Not rejected. Combine more data

I | I | »

»

t=T—-x4 t=T-K3 t=T—-x t=T—-xK t=T

Test time-homogeneity (Padakandla, et al., 2020, Applied Intelligence;
Alegre et al., 2021, AAMAS; Wang, et al., 2023, ICML; Li et al., 2025, AoS)
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To Meet Assumption 2(b): Time-homogeneity

Approach 1: Include time index in the state

®Day of week (e.g., Monday, Friday)

o Time of day (e.g., morning, afternoon)

Approach 2: Change point detection

Not rejected. Combine more data
| I I

t=T—-x4 t=T-K3 t=T—-x t=T-x t

T

Test time-homogeneity (Padakandla, et al., 2020, Applied Intelligence;
Alegre et al., 2021, AAMAS; Wang, et al., 2023, ICML; Li et al., 2025, AoS)
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How to Identify the State (Cont’d)

Rule 3: States be chosen to contain all confounders

e Assumption 3: No unmeasured confounders
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How to Identify the State (Cont’d)

PERRIRERARORARAG

Approach 1: Include baseline information in the state

Approach 2: Clustering (Chen et al., 2025, JASA)

Approach 3: Transfer learning
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Causal RL

¢ Confounded POMDPs: ® Confounded MDPs:
® Tennenholtz et al. (2020, AAA/) ® Wang et al. (2021, NeurlPS)
® Nair and Jiang (2021, Arxiv) ® Xu et al. (2023, ICML)
® Shi et al. (2022, ICML) ® Shi et al. (2024, JASA)
® Bennett and Kallus (2023, OR) ® Yu et al. (2024, NeurlPS)
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Summary

Topics in RL

¢ Offline policy optimization (Levine et al., 2022)

¢ Off-policy evaluation (Uehara et al., 2022)

¢ Non-Markovanity (Shi et al., 2020)

¢ Non-Stationary RL (Li et al., 2025)

e Causal RL (Tennenholtz et al., 2020)

e Behavior policy search (Hanna et al., 2017, 2024)
¢ RL from human feedback (Ouyang et al., 2022)

e State abstraction (Li et al., 2006)

Topics in Statistics

e Estimation

¢ Confidence interval construction
® Hypothesis testing

e Changepoint detection

e Causal inference

e Design of experiments

® Ranking models

e Dimension reduction
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Thank You!

@My RL short course
E [ E

[=]F
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callmespring.github.io

