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We focus on applications in mobile health (mHealth) and ridesharing
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Applications in mHealth

® Management of Type-I diabetes

® Subject: Patients with Type-I
diabetes

® Intervention: Determine whether a
patient needs to inject insulin or
not based on their glucose levels,

food intake, exercise intensity . P
¢ Data: OhioT1DM dataset (Marling ] —
and Bunescu, 2018) wdne ® ® g B E g T e
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Applications in Ridesharing

Trips/year

Premier

a—

Enterprise ESEHEN
Driv

(X3)

aring  Bike & E- Bike  Minibus

g e
Clean Energy Public Bus
Solutions Mgmt System

@8 10678+ %4 40billion+ (93 15billion+

vehicle trajectory data/day data processed/day uting requests/day location points/day

4/48



Applications in Ridesharing (Cont’d)
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What is Off-Policy Evaluation (OPE) and Why OPE

® Objective: Evaluate the impact of a target policy offline using historical data
generated from a different behavior policy
¢ Motivation:
® |n many applications, it can be dangerous to evaluate a target policy by directly
running this policy.
® Healthcare: which medical treatment to suggest for a patient
® Ridesharing: which driver to assign for a call order

® |n additional to a point estimator of the policy value, many applications would benefit
significantly from having a confidence interval or p-value that quantifies the
uncertainty of the point estimate.
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Project |

Statistical Inference of the Value Function for Reinforcement
Learning in Infinite Horizon Settings

Joint work with Sheng Zhang, Wenbin Lu and Rui Song
JRSSB (2022)
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Sequential Decision Making

Time t-1 Time t Time t+1
? | 4 | 4
o a ﬁ a
- - 4
Action R_, Action R, Action R
Ay Reward A, Reward Ay Reward -
Environment \Q —_— \L _— \{/ _—
State S,_, State S, State S,

Objective: infer the expected (discounted) cumulative reward under a target policy

8/48



A general framework for inference of the value

® Qur proposal:

® Existing literature focus on evaluating a fixed policy’s integrated value in off-policy

settings.

Policies Types of values On/off-policy
Fixed: Cl for the value
random v under a given state Off-policy v/
deterministic v v
Data-dependent: | Cl for the integrated
regular v’ value with respect to On-policy v/

nonregular v/

a reference function v/
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Type-I Inference: fixed off-policy

historical data what we want to evaluate
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Type-ll Inference: data-dependent off-policy

historical data what we want to evaluate
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Type-lll Inference: data-dependent on-policy

data what we want to evaluate
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Bidirectional Theory

N the number of trajectories
T the number of decision points per trajectory
bidirectional asymptotics: a framework allows either N or T — oo
large N, small T (Intern Health Study)
T

small N, large T (OhioT1DM dataset)

N

large N, large T (Games)
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Markov Assumption
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Markov Assumption
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Conditional Mean Independence Assumption
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Conditional Mean Independence Assumption
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Type-I| Inference: Method

® Model the Q-function via the sieve method

® Directly model the value instead of Q-function poses challenges in performing inference
to policies that are discontinuous functions of the state

® Ensure the estimator has a tractable limiting distribution

® Increase the number of sieves to reduce the bias resulting from model misspecification

® Derive value estimator based on the estimated Q-function (direct method)

® Provide consistent standard error estimators and construct Wald-type Cl
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Type-| Inference: Theory

Theorem (Informal Statement)

Under certain conditions, the proposed Cl achieves nominal coverage asymptotically, as
either N or T — oo.

® The proposed estimator is valid under bidirectional asymptotics
e Classical augmented inverse propensity score estimator (Zhang et al., 2013) is
inefficient and its consistency requires N — oo.

¢ Undersmoothing is not needed to guarantee that the resulting value estimator has a
tractable limiting distribution

® Sieve estimators of conditional expectations are idempotent (Shen et al., 1997)
® The proposed Cl will not be overly sensitive to the number of basis functions

e Cross-validation can be employed to select the basis functions

® Refer to Section E.2.1 of Shi et al. (2022; Dynamic Causal Effects Evaluation in A/B
Testing with a Reinforcement Learning Framework)
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Type-Ill Inference: Challenges and Methods

e Considers evaluating the value of a data-dependent policy 7 in off-policy settings

® Suppose 7 is computed by some Q-learning type algorithms,

#(als) = 1, if a=argmaxycy (3(5, a’),
0, otherwise,

where Q(-,-) denotes some consistent estimator for Q°P*(-, -).

® In nonregular cases where arg max, Q°P!(s, a) is not unique for some s, 7 will not
converge to a fixed quantity.

® The variance of the value estimator is difficult to estimate.
® Our proposal: SequetiAl Value Evaluation (SAVE)
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SAVE

® Qur procedure:

Step 1 Divide the data into Ky x Kt blocks.
Step 2 Initialize k = 1. While k < KyKr:
1. Use the first k-th blocks of data to estimate the optimal policy and use the k + 1-th
block of data to evaluate its value;
2. Set k = k+ 1.

Step 3 Derive the final estimator as a weighted average of all K — 1 value estimators.

® QOrders of these blocks cannot be arbitrarily determined since observations are time
dependent
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An illustration of SAVE
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An illustration of SAVE

Estimate the optimal policy using first block of data
(e.g. fitted Q iteration)

N

23/48



An illustration of SAVE

Vima) = Zfb'{(:r)ﬁn_(,n(u|‘r-) = UZ()Bx. ﬁz(rr; z) = U}(:!’)ﬁ,:lﬁﬂ(i:')_IU,,(;I:),
acA
Evaluate its value using second block of data

T
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An illustration of SAVE

Estimate the optimal policy using first two blocks of data

T

25 /48



An illustration of SAVE

Evaluate its value using third block of data

..T
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An illustration of SAVE

Estimate the optimal policy using first three blocks of data
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An illustration of SAVE
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Evaluate its value using last block of data
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Type-Il Inference: Theory

Theorem (Informal Statement)

Suppose we Q-learning type estimators to compute 7 and the estimated Q-function
converges at certain nonparametric rate. Then under certain other regularity conditions,
the proposed Cl achieves nominal coverage as either N or T — oc.

® The value of an estimated optimal policy converges to the optimal value at a faster
rate than the estimated Q-function under certain margin type conditions

e Similar results have been established in the classification literature (Tsybakov, 2004;
Audibert and Tsybakov, 2007) and the DTR literature (Qian and Murphy, 2011;
Luedtke and van der Laan, 2016)

® \We extend these results to the RL setting with infinite horizons
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Project Il

Dynamic Causal Effects Evaluation in A/B Testing with a
Reinforcement Learning Framework

Joint work with Xiaoyu Wang, Shikai Luo, Hongtu Zhu, Jieping Ye and Rui Song
JASA, accepted
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A/B Testing

Option A

(T
~Es

https://towardsdatascience.com/how-to-conduct-a-b-testing-3076074a8458 31/48

A/B Test
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https://towardsdatascience.com/ how-to-conduct-a-b-testing-3076074a8458

Motivation: Order Dispatch
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Pickup & Delivery
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Our project is motivated by the need for comparing the long-term rewards of different
order dispatching policies in ridesharing platforms
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Challenges

1. The existence of carryover effects:
® Under the alternating-time-interval (or switchback) design

OD—E—®

® Past actions will affect future outcomes

2. The need for early termination:

® Each experiment takes a considerable time (at most 2 weeks)
® Early termination to save time and budget

3. The need for adaptive randomization:

® Maximize the total reward (e.g., epsilon-greedy)
® Detect the alternative faster

To our knowledge, no existing test has addressed three challenges simultaneously
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lllustration of the Carryover Effects
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Adopting the Closest Driver Policy
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Some Time Later - --
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Miss One Order
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Consider a Different Action
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Able to Match All Orders

39/48



Existence of Carryover Effects

past actions — distribution of drivers — future rewards
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Contributions and Advances of Our Proposal

e Introduce an RL framework for A/B testing

(%) O
(—)—()—®—6)

1. A;_1 impacts R; indirectly through its effect on S;
2. S; shall include important mediators between A;_; and R;

® Most existing A/B tests require the independence assumption

58 &8 o
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Contributions and Advances (Cont’d)

Propose a test procedure for comparing long-term rewards of two policies
1. allows for sequential monitoring
2. allows for online updating

3. applicable to a wide range of designs, including the Markov design,
alternating-time-interval design and adaptive design
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Methodology

e Apply temporal difference learning with sieve method to evaluate value difference
and provide uncertainty quantification

¢ Adopt the a-spending approach (Lan & DeMets, 1983) for sequential monitoring

® Develop a bootstrap-assisted procedure for determining the stopping boundary

® The numerical integration method designed for classical sequential tests is not
applicable in adaptive design, due to the carryover effects
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Application to Ridesharing Platform

¢ Data: a given city from December 3rd to 16th (two weeks)

30 minutes as one time unit, sample size = 672

e State:

1. number of drivers (supply)
2. number of requests (demand)
3. supply and demand equilibrium metric (mediator)

e Action: new policy A=1vs. old A=0

Reward: drivers’ income

The new policy is expected to have better performance
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Application to Ridesharing Platform (Cont’d)

® The proposed test

n Xe}
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e S ] Rej. Boundary
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(a) AA Experiment: Day (b) AB Experiment: Day

e t-test: fail to reject Ho in A/B experiment with p-value 0.18
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Project IlI

Deeply-Debiased Off-Policy Interval Estimation

Jjoint work with Runzhe Wan, Victor Chernozhukov, and Rui Song
ICML, 2021 (long talk, top 3% of submissions)
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Deeply-Debiased OPE

@ Direct Method
Double RL & CI
(Kallus and Uehara)

— Deeply-Debiased

0 @ > P
Estimator & Cl

e

¢ Constructed based on high-order influence function (Robins et al., 2017)
® Ensures bias decays much faster than standard deviation
® Allows to provide valid uncertainty quantification 47/ 48

Bias

Variance

Requirement of Q-estimator




Thank You!

@Papers and softwares can be found on my personal website

callmespring.github.io
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