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Developing AI with Reinforcement Learning

We focus on applications in mobile health (mHealth) and ridesharing
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Applications in mHealth

• Management of Type-I diabetes

• Subject: Patients with Type-I
diabetes

• Intervention: Determine whether a
patient needs to inject insulin or
not based on their glucose levels,
food intake, exercise intensity

• Data: OhioT1DM dataset (Marling
and Bunescu, 2018)
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Applications in Ridesharing
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Applications in Ridesharing (Cont’d)
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What is Off-Policy Evaluation (OPE) and Why OPE

• Objective: Evaluate the impact of a target policy offline using historical data
generated from a different behavior policy

• Motivation:
• In many applications, it can be dangerous to evaluate a target policy by directly

running this policy.
• Healthcare: which medical treatment to suggest for a patient
• Ridesharing: which driver to assign for a call order

• In additional to a point estimator of the policy value, many applications would benefit
significantly from having a confidence interval or p-value that quantifies the
uncertainty of the point estimate.
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Project I

Statistical Inference of the Value Function for Reinforcement

Learning in Infinite Horizon Settings

Joint work with Sheng Zhang, Wenbin Lu and Rui Song
——JRSSB (2022)
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Sequential Decision Making

Objective: infer the expected (discounted) cumulative reward under a target policy
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A general framework for inference of the value

• Our proposal:

Policies Types of values On/off-policy

Fixed: CI for the value
Off-policy ✓random ✓ under a given state

deterministic ✓ ✓

Data-dependent: CI for the integrated
On-policy ✓regular ✓ value with respect to

nonregular ✓ a reference function ✓

• Existing literature focus on evaluating a fixed policy’s integrated value in off-policy
settings.
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Type-I Inference: fixed off-policy
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Type-II Inference: data-dependent off-policy

11 / 48



Type-III Inference: data-dependent on-policy
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Bidirectional Theory
• N the number of trajectories
• T the number of decision points per trajectory
• bidirectional asymptotics: a framework allows either N or T → ∞
• large N , small T (Intern Health Study)

• small N , large T (OhioT1DM dataset)

• large N , large T (Games)
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Markov Assumption
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Markov Assumption
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Conditional Mean Independence Assumption
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Conditional Mean Independence Assumption
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Type-I Inference: Method

• Model the Q-function via the sieve method
• Directly model the value instead of Q-function poses challenges in performing inference

to policies that are discontinuous functions of the state
• Ensure the estimator has a tractable limiting distribution
• Increase the number of sieves to reduce the bias resulting from model misspecification

• Derive value estimator based on the estimated Q-function (direct method)

• Provide consistent standard error estimators and construct Wald-type CI
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Type-I Inference: Theory

Theorem (Informal Statement)

Under certain conditions, the proposed CI achieves nominal coverage asymptotically, as
either N or T → ∞.

• The proposed estimator is valid under bidirectional asymptotics

• Classical augmented inverse propensity score estimator (Zhang et al., 2013) is
inefficient and its consistency requires N → ∞.

• Undersmoothing is not needed to guarantee that the resulting value estimator has a
tractable limiting distribution

• Sieve estimators of conditional expectations are idempotent (Shen et al., 1997)
• The proposed CI will not be overly sensitive to the number of basis functions

• Cross-validation can be employed to select the basis functions

• Refer to Section E.2.1 of Shi et al. (2022; Dynamic Causal Effects Evaluation in A/B
Testing with a Reinforcement Learning Framework)
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Type-II Inference: Challenges and Methods

• Considers evaluating the value of a data-dependent policy π̂ in off-policy settings

• Suppose π̂ is computed by some Q-learning type algorithms,

π̂(a|s) =
{

1, if a = argmaxa′∈A Q̂(s, a′),
0, otherwise,

where Q̂(·, ·) denotes some consistent estimator for Qopt(·, ·).
• In nonregular cases where argmaxa Q

opt(s, a) is not unique for some s, π̂ will not
converge to a fixed quantity.

• The variance of the value estimator is difficult to estimate.

• Our proposal: SequetiAl Value Evaluation (SAVE)
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SAVE

• Our procedure:

Step 1 Divide the data into KN × KT blocks.
Step 2 Initialize k = 1. While k < KNKT :

1. Use the first k-th blocks of data to estimate the optimal policy and use the k + 1-th
block of data to evaluate its value;

2. Set k → k + 1.

Step 3 Derive the final estimator as a weighted average of all K − 1 value estimators.

• Orders of these blocks cannot be arbitrarily determined since observations are time
dependent
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An illustration of SAVE
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An illustration of SAVE
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An illustration of SAVE
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An illustration of SAVE
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An illustration of SAVE

26 / 48



An illustration of SAVE
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An illustration of SAVE
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Type-II Inference: Theory

Theorem (Informal Statement)

Suppose we Q-learning type estimators to compute π̂ and the estimated Q-function
converges at certain nonparametric rate. Then under certain other regularity conditions,
the proposed CI achieves nominal coverage as either N or T → ∞.

• The value of an estimated optimal policy converges to the optimal value at a faster
rate than the estimated Q-function under certain margin type conditions

• Similar results have been established in the classification literature (Tsybakov, 2004;
Audibert and Tsybakov, 2007) and the DTR literature (Qian and Murphy, 2011;
Luedtke and van der Laan, 2016)

• We extend these results to the RL setting with infinite horizons
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Project II

Dynamic Causal Effects Evaluation in A/B Testing with a

Reinforcement Learning Framework

Joint work with Xiaoyu Wang, Shikai Luo, Hongtu Zhu, Jieping Ye and Rui Song
——JASA, accepted
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A/B Testing

Taken from
https://towardsdatascience.com/how-to-conduct-a-b-testing-3076074a8458 31 / 48
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Motivation: Order Dispatch

Our project is motivated by the need for comparing the long-term rewards of different
order dispatching policies in ridesharing platforms
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Challenges

1. The existence of carryover effects:
• Under the alternating-time-interval (or switchback) design

• Past actions will affect future outcomes

2. The need for early termination:
• Each experiment takes a considerable time (at most 2 weeks)
• Early termination to save time and budget

3. The need for adaptive randomization:
• Maximize the total reward (e.g., epsilon-greedy)
• Detect the alternative faster

To our knowledge, no existing test has addressed three challenges simultaneously
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Illustration of the Carryover Effects

34 / 48



Adopting the Closest Driver Policy
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Some Time Later · · ·
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Miss One Order
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Consider a Different Action
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Able to Match All Orders
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Existence of Carryover Effects

past actions → distribution of drivers → future rewards
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Contributions and Advances of Our Proposal
• Introduce an RL framework for A/B testing

1. At−1 impacts Rt indirectly through its effect on St
2. St shall include important mediators between At−1 and Rt

• Most existing A/B tests require the independence assumption
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Contributions and Advances (Cont’d)

Propose a test procedure for comparing long-term rewards of two policies

1. allows for sequential monitoring

2. allows for online updating

3. applicable to a wide range of designs, including the Markov design,
alternating-time-interval design and adaptive design
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Methodology

• Apply temporal difference learning with sieve method to evaluate value difference
and provide uncertainty quantification

• Adopt the α-spending approach (Lan & DeMets, 1983) for sequential monitoring

• Develop a bootstrap-assisted procedure for determining the stopping boundary
• The numerical integration method designed for classical sequential tests is not

applicable in adaptive design, due to the carryover effects
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Application to Ridesharing Platform

• Data: a given city from December 3rd to 16th (two weeks)

• 30 minutes as one time unit, sample size = 672
• State:

1. number of drivers (supply)
2. number of requests (demand)
3. supply and demand equilibrium metric (mediator)

• Action: new policy A = 1 v.s. old A = 0

• Reward: drivers’ income

• The new policy is expected to have better performance
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Application to Ridesharing Platform (Cont’d)
• The proposed test
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• t-test: fail to reject H0 in A/B experiment with p-value 0.18
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Project III

Deeply-Debiased Off-Policy Interval Estimation

joint work with Runzhe Wan, Victor Chernozhukov, and Rui Song
——ICML, 2021 (long talk, top 3% of submissions)
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Deeply-Debiased OPE

• Constructed based on high-order influence function (Robins et al., 2017)
• Ensures bias decays much faster than standard deviation
• Allows to provide valid uncertainty quantification 47 / 48



Thank You!

,Papers and softwares can be found on my personal website

callmespring.github.io
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