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Project |

Testing Stationarity and Change Point Detection in
Reinforcement Learning

Joint work with Mengbing Li, Zhenke Wu and Piotr Fryzlewicz
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Intern Health Study (IHS)

¢ Data: Intern Health Study (NeCamp
et al., 2020)

® Subject: First-year medical interns
working in stressful environments (e.g.,
long work hours and sleep deprivation)

® Objective: Promote physical
well-being

¢ |Intervention: Determine whether to
send certain text message to a subject

1:31PM 94 wioe 138 PM

Dashboard

On a scale of 1-10 how
was your mood today?

3ne 317 318 Done

Cancel

(ii) Mood EMA

R
(iiii) Notifications
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Intern Health Study (Cont’d)

Table 1. Examples of 6 different groups of notifications.

Notification groups  Life insight Tip
Mood Your mood has ranges from 7 to 9 over the past 2 weeks. Treat yourself to your favorite meal. You’ve earned it!
The average intern’s daily mood goes down by 7.5%
after intern year begins.
Activity Prior to beginning internship, you averaged 117 to Exercising releases endorphins which may improve mood. Staying
17,169 steps per day. How does that compare with your  fit and healthy can help increase your energy level.
current daily step count?
Sleep The average nightly sleep duration for an intern is 6 Try to get 6 to 8 hours of sleep each night if possible. Notice how

hours 42 minutes. Your average since starting internship
is 7 hours 47 minutes.

even small increases in sleep may help you to function at peak capac-
ity & better manage the stresses of internship.
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Sequential Decision Making

Time t-1 Time t Time t+1
? ? ?
- ﬂ a a
- - -
Action R,_, Action R, Action R,
Ay Reward A, Reward A Reward ...
Environment \Q _— \Q —_— \{/ _—
State S,_, State S, State S,

Objective: find an optimal policy that maximizes the cumulative reward

6/57



Reinforcement Learning

¢ RL algorithms: trust region policy optimization (Schulman et al., 2015), deep
Q-network (DQN, Mnih et al., 2015), asynchronous advantage actor-critic (Minh et
al., 2016), quantile regression DQN (Dabney et al., 2018).

® Foundations of RL:
® Markov decision process (MDP, Puterman, 1994): ensures the optimal policy is
stationary, and is not history-dependent.
® Markov assumption: conditional on the present (e.g., S, A;), the future (R;, S¢4+1)
and the past data history are independent
® Stationarity assumption: the Markov transition kernel, e.g., the conditional
distribution of (R, S¢t1) given (S = s, A; = a) is stationary over time

7/57



Stationarity Assumption

e Stationarity assumption is likely to hold in many OpenAl Gym environments

® However, it can be violated in the real world environment
® Treatment effects can be nonstationary

® COVID vaccine effectiveness decays over time
® The treatment effect of activity suggestions may transition from positive to negative

Environments can be nonstationary
® COVID mutations, invention of vaccines
® |n the context of mobile-delivered prompts, the longer a person is under intervention,
the more they may habituate to the prompts or become overburdened

Without stationarity, the optimal policy is nonstationary as well

Crucial for policy maker to take nonstationarity into account
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Challenges

® When the optimal policy is nonstationary, using all data is not reasonable

e Natural to use more recent observations for policy optimisation

® Challenging to select the most recent best data “segment” of stationarity

® |ncluding too many past observations yields a suboptimal policy
® Using only a few recent observations results in a very noisy policy
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Contributions

* Methodologically
® First work on developing consistent test for stationarity in offline RL

® The test procedure is “model-free”’ (target on the optimal Q-function Q")
® Null hypothesis Ho: Q° is stationary over time
® Alternative hypothesis H1: Q%" varies over time

® Sequentially apply the test for selecting the best data “segment”
e Empirically

® |dentify a better policy compared to existing RL algorithms in IHS
® Theoretically

® prove our test has good size and power properties under a bidirectional asymptotic
framework
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Method: Test Statistics

Some key components of the test statistic:
® Model the optimal Q-function via the sieve method

® Ensure the estimator has a tractable limiting distribution
® |ncrease the number of sieves to reduce the bias resulting from model misspecification

e Construct CUSUM-type test statistics for change detection (detailed later)
® \Widely used in the time series literature
® QObtain critical values using multiplier bootstrap

® Q-estimator is asymptotically normal

® Test statistic is a complicated function of several Q-estimators

® Bootstrapped statistic is a function of simulated random normal errors
® Approximate critical values via the quantile of the bootstrapped statistic
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Method: Test Statistics (Cont’d)

e A CUSUM-type test statistic
® Select a set of candidate change point locations u € [Ty, T]

® For each u, estimate two Q-functions Q[To7u] and Q[u71-]
® (Construct the test based on their maximal difference

Q 7] Q 11

222220  vimmis .

t=T0 ul t=T
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Method: Test Statistics (Cont’d)

e A CUSUM-type test statistic
® Select a set of candidate change point locations u € [Ty, T]

® For each u, estimate two Q-functions Q[To7u] and Q[u71-]
® (Construct the test based on their maximal difference

Q Ty Q 1

Liiiiiiiiizziizihbbssummmm mn gmpnummmmn .

t=T0 u2 t=T
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Method: Test Statistics (Cont’d)

e A CUSUM-type test statistic
® Select a set of candidate change point locations u € [Ty, T]

® For each u, estimate two Q-functions Q[To7u] and Q[u71-]
® (Construct the test based on their maximal difference

Q 17,3 Q .11

Liiiiiiiiiizrzzzzzz;z7z:adsummsmmmgmnn
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Method: Test Statistics (Cont’d)

e Standard CUSUM-statistics that focuses on the difference in the mean
e We focus on the difference in @ which is a function of the state-action pair
® Need to aggregate the maximal difference
T —u)(u— T() -~ ~
Aas) = muax\/ LT 0, y(a.s) - Qun(as) ()

over different state-action pair

Three proposed test statistics

1. ¢;-type: aggregate A(a,s) over the empirical data distribution
2. maximum-type: max, s A(a, s)
3. normalized maximum (widely used in econ): max, s !(a,s)A(a,s)

e Bootstrapped statistic: replace @ in (1) with simulated normal errors
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Method: Test Statistics (Cont’d)

The test is able to detect both abrupt and smooth changepoints
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Method: Sequential Procedure

® Sequentially apply the test for selecting the most recent best data “segment”
® Sequentially test whether #g holds on the data interval [T — &, T] for
IQ]<IQ2<FL3<"'
® Suppose Hy is first rejected at some kK = Kj,
® Use the data subset within the interval [T — kj,_1, T] for policy optimisation

Hypothesis Testing
T
>
t = T K3 t= T KZ t= T Kl =
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Method: Sequential Procedure (Cont’d)

® Sequentially apply the test for selecting the most recent best data “segment”

® Sequentially test whether #g holds on the data interval [T — &, T] for
IQ]<IQ2<FL3<"'

® Suppose Hy is first rejected at some kK = Kj,

® Use the data subset within the interval [T — kj,_1, T] for policy optimisation

Not rejected. Combine more data

J—l—u >

t=T1T- K3 t=T- Ky t=T- Ky t=T
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Method: Sequential Procedure (Cont’d)

® Sequentially apply the test for selecting the most recent best data “segment”

® Sequentially test whether #g holds on the data interval [T — &, T] for
F-'/1<K/2<K'/3<“'

® Suppose Hy is first rejected at some kK = Kj,

® Use the data subset within the interval [T — kj,_1, T] for policy optimisation

Not rejected. Combine more data

Wi

t=0 t=T-x5 t=T-xK t=T-x t=T
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Method: Sequential Procedure (Cont’d)

® Sequentially apply the test for selecting the most recent best data “segment”

® Sequentially test whether #g holds on the data interval [T — &, T] for
IQ]<IQ2<FL3<"'

® Suppose Hy is first rejected at some kK = Kj,

® Use the data subset within the interval [T — kj,_1, T] for policy optimisation

Rejected. Use the last data interval

J—l—u >

t=T1T- K3 t=T- Ky t=T- Ky t=T

20 /57



Simulation

® Settings:
State transition function ~ Reward function
(1) Time-homogeneous Piecewise constant
(2) Time-homogeneous Smooth
(3) Piecewise constant Time-homogeneous
(4) Smooth Time-homogeneous
® Analysis:

® Testing stationarity
® Change point detection
® Policy learning
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Analysis I: Testing Stationarity

e N =25 T =100, true change occurs at k = 50

Rejection Probability
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Analysis Il: Change Point Detection
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Analysis lll: Policy Learning

e Offline data with T = 100

e Apply our proposal for identifying the recent change point T

e Apply RL algorithm to data interval ['T', T] to learn a warm-up policy

® Use the warm-up policy (combined with e-greedy) to generate online data
® Online data come in batches regularly at every 25 time points

® Number of change points follow a Poisson process with rate 1/50

® Update the change point and the policy after each data batch arrives

e Compute the average reward
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Application: Intern Health Study

1:31PM 94 wioe 138 PM

® Subject: First-year medical interns

Dashboard

On a scale of 1-10 how

® Objective: Develop treatment policy s
was your mood today'«

to determine whether to send certain
text messages to interns to improve
their health

e S;: Interns’ mood scores, sleep
hours and step counts

e A;: Send text notifications or not

Cance At

(ii) Mood EMA

® R;: Step counts

il Notifications
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Application: Intern Health Study (Cont’d)

Emergency ‘

Pediatrics ‘ Family Practice

60

=A

S6°0

- P Value
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Application: Intern Health Study (Cont’d)

Number of Change Points Specialty Method =09 ~=0.95
Proposed  8237.16  8295.99
>1 Emerenc Overall ~ 8108.13  8127.55
= ENY  Behavior 782375  7777.32
Random 8114.78  8080.27
Proposed  7883.08  7848.57
>9 Pediatrics Overall 792544  7960.12
= Behavior 773098  7721.29
Random 7807.52  7815.30
Proposed  8062.50  7983.69
. . Overall ~ 8062.50  7983.69
0 Family Practice gy vior  7967.67  7957.24
Random  7983.52  7969.31

TABLE 3

Mean value estimates using decision tree in anaylsis of IHS. Values are normalised by multiplying 1 — ~y. All

values are evaluated over 10 splits of data.

® Mean value is the weekly average step counts per day

® The proposed method improves mean value by 50 — 150 steps, compared to the

behavior policy
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Bidirectional Theory

N the number of trajectories
T the number of decision points per trajectory
bidirectional asymptotics: a framework allows either N or T — oo
large N, small T (Intern Health Study)
T

small N, large T (OhioT1DM dataset)

N

large N, large T (games)
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Bidirectional Theory (Cont’d)

Theorem (Informal Statement)

Under certain conditions, as either N or T diverges to infinity

1.
2.

Our test controls the type-I error under Hyg

Its power approaches 1 under Hq

The number of sieves shall grow to infinity — reduce the model misspecification
error (classical weak convergence theorem is not directly applicable)

Develop a matrix concentration inequality under nonstationarity (sharper than
naively applying concentration inequalities for scalar random variables)

Undersmoothing is not needed to guarantee the test has good size property
Cross-validation can be employed to select the number of sieves

f1 and normalized maximum type tests require weaker conditions than the

maximum-type test
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Project Il

Doubly Inhomogeneous Reinforcement Learning

Joint work with Liyuan Hu, Mengbing Li, Zhenke Wu and Piotr Fryzlewicz
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Motivation

® Most existing RL algorithms require two fundamental assumptions:
1. Global (temporal) stationarity assumption (GSA): the system dynamics within each

data trajectory does not experience temporal changes

2. Global (subject) homogeneity assumption (GHA): all data trajectories share the
same system dynamics

® Both assumptions are likely to be violated in a number of applications (e.g.,
healthcare, ridesharing), challenging high-quality sequential decision making

Table: Forms of the Optimal Policy in Different Environments.

GSA v GHA v

GSA v GHA X

GSA X GHA v

GSA X GHA x

doubly homogeneous

stationary

homogeneous

subject-specific history-dependent

® In this project, we study RL in doubly inhomogeneous environments (e.g.,
dynamics change over time and population)
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Configurations of Double Inhomogeneity

® To illustrate double inhomogeneity, consider two subjects with a single change point

Merge Split Promotion Switch
Subject 1
Subject 2
11 o 4 ta ta 1 12
Evolution Evolution & Constancy Merge & Evolution Split & Evolution

Subject 1

Subject 2

ty to ty to ty to

Figure: Basic building blocks with two subjects (one in each row) and a single change point. Different
dynamics are represented by distinct colors.

ty ta
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Data, Assumptions and Objective

e Data: N trajectories, T time points per trajectory.

® Qur assumptions:
1. Local Stationarity at the Endpoint (LSE): For each subject i, there exists some
7; > 0 such that the transition function is a constant function of t for any
T—7m<t<T.
2. Local Homogeneity at the Endpoint (LHE): There exists a finite number K of
disjoint subject clusters UK_;Cy, where Cx C {1,..., N}, such that within each cluster
Ck, the transition function at time T is constant over different subjects

® Objective: determine the best data rectangle that display similar dynamics over
time and subjects, to borrow information for effectively policy learning
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Objective (Cont’d)

As an example ...

Asynchronous Evolution Asynchronous Evolution

t1 ot to t1 7 t3 to
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Method

Subroutine 1: Clustering

Method: any algorithm optimize:
K i

Z log P(Si,[ | Aje—1,Si-15 Oc )

=Gl

Subroutine 2: Change point detection

H: the transition function is a constant as a function of ¢ for

any i in Cy, sequentially for 7o, 7o + 1, ..., until HQis rejected

I
I
I
| Method: Based on log-likelihood ratio CUSUM statistics, test
I
I
I

yes

—_—— e = —— - ——

el e, el

Information criterion

Output

{30 {C},
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Theory

Table 2: Rate of convergence when N and T have different divergence properties. The “CP
error” refers to the change point detection error and “non-negligible” means that the error does
not decay to zero as N — oo.

Iteration T—s00 T—o00 T fixed
N — oo N fixed N — o0
15t clustering error 0 0 non-negligible
CP error 0 Op (101%]21%:)) non-negligible
ond clustering error 0 0 . non-negligible
CP error 0 Op (101%]1%\%:)) non-negligible

® Only require the overestimation error of each initial 7; to satisfy certain rate. No
assumption is imposed on their underestimation error.
e Detect weaker signals and have faster convergence rates compared to applying

the clustering algorithm per time or the CP detection algorithm per subject .



Simulation

Oracle Change Point+Random Change Point Oracle Change Point+No Change Point
Piecewise Constant Smooth Piecewise Constant Smooth

0.15 ;
S 3
c 0.10
@ ] ] 3 m
2 oos ES | mm = $ = :
8 0.00 * *
$o.
= 10 :
o
ELbAL L. = __ ==
- = :
= 0.6 )
i . BE . .

B3 Model Selected via the Information Criterion E8 Oracle Change Point B8 Random Change Point B8 No Change Point

Figure: Average CP error and ARI with different initial change point locations are chosen by the
information criterion.
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Simulation (Cont’d)

Piecewise Constant Smooth

E. e ==
ng;;'F $E e $$

025 E=

0.00 —_— —

1013 dd

tion Performance
N
o9
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v

B Model Selected via the Information Criterion B3 K=1 B3 K=2 B3 K=3 B K=4

Figure: Average performance in offline estimation with different number of clusters (K = 1,2,3,4) and the
results chosen by the information criterion.
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Simulation (Cont’d)

¢ Online value evaluation: recursively apply the proposed algorithm to update the
estimated optimal policy and use this policy for action generation

¢ Competing policies: oracle, doubly homogeneous (DH), homogeneous, stationary

Smooth

pERgr e

Piecewise Constant

+$.',.;..|.
= ' =~

B3 Proposed B3 Oracle B3 DH E3 Homongeneous B3 Stationary

N W

o

Average Value
[

Figure: Boxplot of the expected returns under the proposed policy and other baseline policies that either
ignore non-stationarity or heterogeneity.
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Project IlI

Pattern Transfer Learning for Reinforcement Learning in
Order Dispatching
—Best Paper in IJCAI RL4ITS Workshop

Joint work with Runzhe Wan, Sheng Zhang, Shikai Luo and Rui Song
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Ridesharing: Order-Dispatching

«
Centralized Decision Platform t
2 o Trips/year Order list Driver list
r 3 R
E < > E
Passenger Occupancy | | gpg
Request Status
o) (J L
-

Matching
o . 1
Vehicle trajectory data/day data processed/day routing requests/day. location points/day

Pickup & Delivery

Objective: learn an optimal policy to maximize
® answer rate (proportions of call orders being answered)
® completion rate (proportions of call orders being completed)

® drivers’ income
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Closest Driver Policy

Assign the call order to the closest available driver

arg ryln E E d(i,j)aj Minimize driver-passenger total distance
i j
i=1j=1

s.t. Z a;<1, j=1,--,n Order assigned to at most one driver

i=1
Z a;<1 i=1---'m Driver assigned to at most one order
® j indexes the ith driver ® j indexes the jth order
e d(i,j) = distance between i and j
® One of the two equalities shall hold ® a;; =1 < order j is assigned to i
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Closest Driver Policy: Limitations

The company implements the policy every 2 seconds

Myopic policy (e.g., maximize immediate rewards)
® No guarantee it will maximize long-term rewards

® Example given later
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lllustration of Limitations of Closest Driver Policy
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Adopting the Closest Driver Policy
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Some Time Later - --
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Miss One Order
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Consider a Different Action
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Able to Match All Orders
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MDP Order Dispatch Policy (Xu et al., 2018)

¢ Adopts a reinforcement learning framework to optimize long-term rewards

® Delivers remarkable improvement on the platform’s efficiency

Main idea:

® Closest driver is myopic because its objective function (e.g., total distance) only
considers immediate rewards

® Use an objective function that involves long-term rewards (e.g., value)

A learning and planning approach:
® Learning: policy evaluation based on historical data

® Planning: order dispatch by maximizing total value
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Pattern Transfer Learning

® Motivation: violation of stationarity assumption in data collected from ridesharing
platforms, leading to nonstationary MDPs

® The system dynamics is likely to vary over time

® Naive solution:

® Use more recent data for policy evaluation (learning)
® Use value function trick for order dispatching (planning)
® Disadvantage: discard a lot of data

® Research question: how should we efficiently utilize historical dataset to improve
the efficiency of value function estimation
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Nonstationarity

¢ Value function estimated I ; : I :
based on data from | 7 | : . |
KDD CUP 2020 : 1) |
Value ¥
® 30-day's data collected from  Ferction 2 |
Didi Chuxing | : | :
|

® Left plot: value based on : - |
first 15-day's data el : ‘ [ . |
® Right plot: value based on vaes | Vst =17 : | ¥ V(si)l_=:“2.:1‘, ( :

last 15-day's data etationship | gt S e 7 Ye2=18s
y Il:oldshpl V(s3)=16.4 7 { (] ,..\-MV(S?')=2X.2 ’ |
® Absolute values differ I ! (I L s |
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Main ldea

® Magnitude of value is

| < |
nonstationary | « ) |
. . 3 l ¥
e Concordance relationship | | : ) :
1 1 Val I
of value remains stationary = Yalue | 1 |
at :

® Values of hot zones (e.g., T00pm. | (! |
centers) are consistently | I |
larger than those of cold | : | :

zones (e.g., suburbs) absotute | E ] | | 7
e 1| wsh=1z7. 1|7 Vish=24 I
® Overall, concordance Covia | | Bt Pt | |

, concgrdan_ce V(s2) =152 '+ | " 2\gsm: 18.5 “o
. . relationship & H i .

relationship holds on more hotas | fV(sF =164 i b [ v =252 . § |
than 80% state pairs I_____‘__‘___!I______’____!
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Concordance

® Widely used in the statistics and economics literature
® Maximum rank correlation estimator for regression (Han, 1987)
® Concordance-assisted estimator for learning optimal dynamic treatment regimes (Fan et
al., 2017; Shi et al., 2021)

® For two states s; and s; and two value functions V; and V,
® Concordance is 1 if {Vi(s1) — Vi(s2)}{Va(s1) — Va(s2)} > 0 and 0 otherwise

e Concordance penalty:

(Vi Vi) = s ST #VA(S) — Va(S)H Va(S) — Va(S)) < )
i<j

® Constrained policy evaluation: compute the value function subject to the
concordance constraint,

C(VOld, vneW) S €.
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Simulation

® Build dispatch simulator using the KDD dataset

T 640000
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Figure 2: Performance of different methods when y = 0.9 (upper) and v = 0.95 (lower). The x-axis represents consecutive weekdays in the
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target environment. Our method outperforms the baseline methods under different metrics.
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Thank You!

@Papers and softwares can be found on my personal website

callmespring.github.io
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