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A few words on causal inference

Data

A: Treatment (0 or 1)

X : Covariates

Y : Observed outcome (usually the larger the better)

Y ∗(a): Potential outcome a = 0, 1

Objective

Identify the optimal regime dopt to reach the best clinical outcome

Maximize EY ∗(d) = E[d(X )Y ∗(1) + {1− d(X )}Y ∗(0)]

d : X → {0, 1}.
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Q, Contrast and Value function

Q(x , a) = E[Y |X = x ,A = a],

C (x) = Q(x , 1)− Q(x , 0),

V (d) = EY ∗(d) = E[d(X )Y ∗(1) + {1− d(X )}Y ∗(0)].

Optimal treatment regime

SUTVA, no unmeasured confounders, positivity assumption

optimal treatment regime

dopt(x) = I (C (x) > 0).
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Heterogeneity

Optimal treatment regime (OTR): captures patient’s heterogeneous
response

However, OTR may vary across patients.

Data integration (Meta analysis)

Results combined from different studies to identify similar patterns.
Heterogeneity due to different populations of the data

Examples

Schizophrenia study: OTR varies across patients locations

Health assessment questionnaire (HAQ) progression data: OTR varies
across patients enrollment time
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Schizophrenia study

A multi-center, randomized trial with an 18 months follow-up

Over 400 patients from three geographical locations
(Manchester/Salford, Liverpool and North Nottinghamshire)

HAQ data

An observational study which enrolled 847 patients enrolled from
1990 to 2000.

Patients enrolled at different times showing heterogeneity; we
considered three groups: 1990 - 1992 (G = 1); 1993 - 1996 (G = 2);
1997 - 2000 (G = 3).
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How to recommend treatment rule for future patients?

Strategy 1: recommend OTR according to patients groups (What if
the future patients don’t belong to any of current groups)

Strategy 2: combine the data together and obtain OTR based on the
pooled data (Doesn’t take population heterogeneity into account)

Our Strategy: focus on a single treatment regime that accounts for
population heterogeneities.
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Models

G different population groups:

Ygj = hg (Xgj) + Agjψg (XT
gj βg ) + εgj

||βg ||2 = 1, g = 1, . . . ,G , j = 1, . . . ,m

hg arbitrary baseline function

ψg arbitrary monotone function

Xgj mean 0, covariance matrix I .
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Objective

Group-wise optimal regime: I (XT
0 βg > ψ−1g (0))

Overall decision: I (XT
0 β0 > c0) subject to ||β0||2 = 1

Two steps strategy:

Step 1: Fix c0, search for some β0(c0) achieves some “optimality”
Step 2: Optimize over c0

How to define “optimality”

For each β, define some loss function Lg (β) given the decision

I (XT
0 β > c0).

Minimax effects β0 = arg minβ maxg Lg (β)

Maximize the minimum reward
Minimize the risk of the worst-case scenario (minimax strategy in game
theory)
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How to choose loss function

Example (Error rate)

Using error rate (average percentage of making the wrong decision),

L
(1)
g (β) = E|I (XT

g βg > ψ−1g (0))− I (XT
g β > c0)|,

The minimax effects β
(1)
0 = arg minβ:||β||2=1 maxg L

(1)
g (β).

Example (Value difference function)

Using value difference (the difference of the value under overall decision
and that under optimal groupwise decision)

L
(2)
g (β) = EY ?

g (dopt
g )− EY ?

g (d(Xg , β)),

where d(Xg , β) = I (XT
g β > c0).

The minimax effects β
(2)
0 = arg minβ:||β||2=1 maxg L

(2)
g (β)
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An intuitive definition for the minimax effects

Assume ψ−11 (0) = ψ−12 (0) = · · · = ψ−1G (0) = c̄, for each subgroup g ,
the optimal regime becomes

I (XT
0 βg > c̄),

Note that ||βg ||2 = 1, each βg represents the “direction”.

Intuitively, we can define the minimax effects through “angles”:

β
(3)
0 = arg min

||β||2=1
max
g

∠(β, βg ).

More formally, let

F (β) = min
g
βTβg ,

and β
(3)
0 is defined as arg max||β||2=1 F (β) (Maximin correlation

approach Avi-Itzhak et al., 1995).
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Theorem (Equivalence of β
(1)
0 and β

(3)
0 )

Assume ψ−11 (0) = ψ−12 (0) = · · · = ψ−1G (0) = c̄ , each Xij i.i.d spherically
distributed, then for any c0,

β
(3)
0 = β

(1)
0 .

Theorem (Equivalence of β
(2)
0 and β

(3)
0 )

Assume ψ1 = ψ2 = · · · = ψG = ψ, each Xij i.i.d spherically distributed,
then for any c0,

β
(3)
0 = β

(2)
0 .

Only need to focus on the third definition !!
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Refinement

β
(3)
0 = arg max||β||2=1 F (β)

β
(3)
0 always exists: the minimax effects is well defined

May not be unique when F0 = max||β||2=1 F (β) < 0

The optimization problem

arg max
||β||2=1

F (β),

is a quasi-concave problem (difficult to solve globally).

Consider β
(4)
0 = arg max||β||2≤1 F (β),

Solving β
(4)
0 is a tractable concave programming (Seung-Jean et al.,

2008).

β
(4)
0 always exists, and is unique when F0 6= 0.
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Estimating procedure

Assume estimators β̂1, . . . , β̂G are available with ||β̂g ||2 = 1 for any g .

Concave optimization problem

β̂0 = arg max
β:||β||2≤1

min
g=1,...,G

βT β̂g .

Equivalent to QCLP:

maximize t ∈ R
subject to βT β̂g ≥ t, g = 1, . . . ,G

βTβ ≤ 1,

Obtain ĉ0 by maximizing IPWE (AIPWE):

ĉ0 = arg max
c

1

mG

∑
i

∑
j

Yij I (X
T
ij β̂0 > c)

Ai π̂i + (1− Ai )(1− π̂i )
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Theorem (Consistency)

Under certain conditions, if F0 6= 0, then with probability goes to 1, the
estimated minimax effects β̂0 = 0. If F0 > 0, then

||β̂0 − β0||2 = sup
g∈T0

O(||β̂g − βg ||2)

Theorem (Asymptotic normality)

Under conditions in Theorem 3, if F0 > 0,

√
m(β̂g − βg ) =

1√
m

m∑
i=1

ψig + op(1),

with Σg = Eψgψ
T
g , maxj=1,...,s |ψj

ig |3 <∞, then
√
m(β̂0 − β0) is

asymptotically normally distributed with mean 0, and some covariance
matrix Σ0.
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Over all value function

For each threshold c , we define the overall value function under the regime
I (xTβ0 > c) as

V (β0, c) =
1

G

G∑
g=1

E(hg (Xg0) + ψ(XT
g0β0)I (XT

g0β0 > c)),

and denote c0 to be the arg max of V (β0, c) over c.

Theorem

Under certain regularity conditions, we have

ĉ0 − c0 = Op(m−1/3).

Moreover,
√
m(V̂m(β̂0, ĉ0)− V (β0, c0)) is asymptotically normal with

mean 0, variance v20 .
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Simulation studies

Generate models from 4 different groups and estimate OTR for each
group using A-learning estimating equation.

Compare the pooled treatment regime dP(x) = I (xT β̂P > ĉP) with
minimax treatment regime dM(x) = I (xT β̂M > ĉM).

Leave one group out cross validation procedure: obtain dP(x) and
dM(x) based on any 3 groups of patients and evaluate the error rate,
value function on the remaining group.
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Thank you!
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Simulation setting

Three groups of patients, each generated according as

Ygj = h(Xgj) + 2AgjX
T
gj βg + εgj ,

Xgj
i .i .d∼ N(0, I4) and εgj

i .i .d∼ N(0, 0.25).

Two baseline functions for h: linear and nonlinear.

Two propensity score models for π: constant and probit.

Four settings: subgroup estimator obtained using A-learning based on
a linear model for h and logistic model for π:

1 S1: π correct, h correct,
2 S2: π correct, h wrong,

3 S3: π wrong, h correct,
4 S4: π wrong, h wrong.
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Simulation setting (Continued)

Two scenarios for subgroup parameters (representing different degrees
of heterogeneity):

(large heterogeneity) β1 = (1, 0), β2 = (cos(10◦), sin(10◦)),
β3 = (cos(70◦), sin(70◦)), β4 = (0, 1);
(small heterogeneity) β1 = (cos(30◦), sin(30◦)),
β2 = (cos(45◦), sin(45◦)), β3 = (cos(54◦), sin(54◦)),
β4 = (cos(60◦), sin(60◦)).

β0 = (cos(45◦), sin(45◦)) for both scenarios.
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Table: Bias, standard deviation (in parenthesis) of β̂0 and coverage probability for
confidence intervals of β0.

β̂
(1)
0 β̂

(2)
0 CP for β̂

(1)
0 CP for β̂

(2)
0

Sce 1 S1 −0.018(0.037) −0.028(0.051) 96.6% 97.6%
S2 −0.015(0.045) −0.025(0.053) 97.6% 96.8%
S3 −0.016(0.048) −0.024(0.055) 97.2% 95.2%
S4 −0.010(0.061) −0.020(0.069) 98.8% 98.0%

Sce 2 S1 3.6× 10−4(0.018) −0.001(0.018) 96.0% 95.0%
S2 −0.006(0.033) 0.003(0.031) 96.8% 96.8%
S3 −0.008(0.045) 0.002(0.042) 96.6% 97.4%
S4 −0.012(0.064) 0.004(0.063) 96.6% 97.8%
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Table: Bias, standard deviation of V̂m(β̂M , ĉM) and coverage probability for
confidence intervals of V (βM , cM)

Scenario 1 Bias SD CI Scenario 2 Bias SD CI

Setting 1 0.017 0.083 95.6% Setting 1 0.007 0.099 95.4%
Setting 2 0.018 0.074 95.6% Setting 2 0.005 0.075 95.2%
Setting 3 0.018 0.134 93.6% Setting 3 0.011 0.101 95.2%
Setting 4 0.027 0.137 93.0% Setting 4 0.003 0.115 95.2%
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Comparison with simple method

Methods to compare:

minimax treatment regime: dM(x) = I (xT β̂M > ĉM)
pooled treatment regime: dP(x) = I (xT β̂P > ĉP)

Evaluation

obtain the estimated regime based on three groups and apply it to the
remaining group;
compute error rate (using the estimated group-specific regime as the
truth) and estimated value function (using A-learning) of the estimated
regime for each group
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Table: Groupwise and overall error rate and value function (in parenthesis) for the
first scenario under estimated minimax OTR and pooled OTR

Testing group First group Second group Third group Fourth group

Setting 1
pooled 32.2%(1.42) 25.1%(1.56) 21.9%(1.61) 35.7%(1.35)
minimax 28.3%(1.50) 20.2%(1.64) 15.0%(1.71) 31.1%(1.45)

Setting 2
pooled 32.2%(1.42) 25.2%(1.56) 21.7%(1.62) 35.8%(1.34)
minimax 28.0%(1.51) 20.2%(1.64) 15.5%(1.71) 31.2%(1.44)

Setting 3
pooled 32.0%(1.43) 25.1%(1.56) 21.9%(1.61) 36.1%(1.34)
minimax 28.7%(1.49) 21.0%(1.62) 16.2%(1.69) 31.4%(1.44)

Setting 4
pooled 32.0%(1.42) 25.2%(1.55) 22.0%(1.61) 35.9%(1.34)
minimax 28.7%(1.49) 21.0%(1.63) 16.3%(1.69) 31.8%(1.43)
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Table: Groupwise and overall error rate and value function (in parenthesis) for the
second scenario under estimated minimax OTR and pooled OTR

Testing group First group Second group Third group Overall

Setting 1
pooled 12.8%(1.73) 2.0%(1.80) 5.0%(1.79) 9.5%(1.76)
minimax 13.0%(1.73) 3.3%(1.79) 6.0%(1.78) 10.6%(1.75)

Setting 2
pooled 12.8%(1.73) 2.3%(1.80) 5.2%(1.79) 9.6%(1.76)
minimax 13.1%(1.73) 3.7%(1.79) 6.2%(1.78) 10.7%(1.75)

Setting 3
pooled 12.9%(1.73) 2.5%(1.79) 4.9%(1.79) 9.3%(1.76)
minimax 13.3%(1.73) 4.4%(1.79) 6.6%(1.78) 10.6%(1.75)

Setting 4
pooled 13.0%(1.73) 3.4%(1.79) 5.6%(1.78) 9.5%(1.76)
minimax 14.2%(1.71) 5.6%(1.78) 7.7%(1.77) 11.1%(1.75)
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