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A few words
on causal inference
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Variable selection for optimal treatment decision

On dynamic treatment regime

o AM): first treatment received at time t; (0 or 1)

o S(U): patient’s baseline covariates prior to t;
o A(): second treatment received at time t, (0 or 1)
e S(@): intermediate covariates collected between t1 and B

e Y: patient’s final outcome (usually the larger the better)
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Variable selection for optimal treatment decision

On dynamic treatment regime

Data

AQ): first treatment received at time t; (0 or 1)
SM): patient’s baseline covariates prior to

AQ): second treatment received at time t, (0 or 1)

S(). intermediate covariates collected between t; and t

Y: patient’s final outcome (usually the larger the better)

| h

Objective

Identify the optimal regime dfpt, d;pt to reach the best clinical outcome

@ di,dr: Maximize Y

di: SO = {0,1}
dp - (S, AN sy 5 f0,1}
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Variable selection for optimal treatment decision
Statistical model

Denote Xj, vector of covariates, [(5,-(1))T, Agl), (5,.(2))T]T

Yi = hA(X:) + APBT X; + &),
E(V|S,,A(1)) (1)(5(1)) +A(1)C( (1))

where the V-function V; = max ,2) Q(Xi, A,(.z)) and Q-function

QX AP) = E(Yi X, A®) = h®(x;) + AP (X B, > 0).
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Variable selection for optimal treatment decision
Statistical model

Denote X;, vector of covariates, [(5,-(1))T, Agl), (5,-(2))T]T

Yi = hA(X:) + APBT X; + &),
E(Vils: A7) = hO(SPY) + A C(st)

where the V-function V; = max ) Q(Xi, A,(.z)) and Q-function

Q(Xi, A?) = E(Y;|X:, A®) = (X)) + AP I(XT B2 > 0).

| N

Optimal treatment regime
@ SUTVA, no unmeasured confounders, positivity assumption

@ optimal dynamic regime

dsP = 1(X;" B2 > 0), dPf = I(C(S ) > 0)

v
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Variable selection for optimal treatment decision

Existing literature
e Q-learning (Watkins and Dayan, 1992; Chakraborty et al., 2010)
@ A-learning (Murphy, 2003; Robins, 2004)
@ Value search method (Zhao et al., 2012; Zhang et al., 2012)
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Variable selection for optimal treatment decision

Existing literature

e Q-learning (Watkins and Dayan, 1992; Chakraborty et al., 2010)
@ A-learning (Murphy, 2003; Robins, 2004)
@ Value search method (Zhao et al., 2012; Zhang et al., 2012)

v

o A =AY AT j-12  v=(vi,....Y)T,

o X=(X7,...xDT,  s=[ST ... (s,

o 7@(x) =Pr(A® — 11X, =x),  7@(s) =Pr(AM = 1|5, = ),
o V=(V,..., V) .
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A learning estimating equation

o Estimate 35:

X Tdiag(A® — 2@y — A — A@ o (XB,)] =0,
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A learning estimating equation

@ Estimate B5:

X Tdiag(A® — 2@y — A — A@) o (X,)] = 0,
e Estimate V; using advantage function (Murphy, 2003):

Vi = Vi + X[ Ball(XT B2 > 0) — AP,
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A learning estimating equation

@ Estimate B5:

X Tdiag(A® — #@)[y — 4@ — A@ o (X3,)] =0,
e Estimate V; using advantage function (Murphy, 2003):
Vi = Yi + XTBlI(XT By > 0) — AP,
o Estimate f1:

aC("S? Bl)

.
o diag(A® — #W) [V — AW — AW 6 C(S, 31)] = 0.
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A learning estimating equation

@ Estimate B5:

X Tdiag(A® — #@)[y — 4@ — A@ o (X3,)] =0,
e Estimate V; using advantage function (Murphy, 2003):
Vi = Yi + XTBlI(XT By > 0) — AP,
o Estimate f1:

aC("S? Bl)

.
o diag(A® — #W) [V — AW — AW 6 C(S, 31)] = 0.

e Double robustness of [3y:
consistency either (2 or h(? is correct
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Variable selection for optimal treatment decision

High Dimensional A-learning for Optimal Dynamic
Treatment Regime
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Variable selection for optimal treatment decision

@ Sequenced Treatment Alternatives to Relieve Depression (STAR*D)
e Patients with major depression disorder (MDD)
@ 4041 patients, 381 covariates available at Level 3, 305 at Level 2
@ 73 patients BUP or SER at Level 2, MRT or NTP at Level 3
v
(e (D (o)
CIT Treatment | Treatment Treatment | Treatment Treatment Treatment Treatment | Treatment
Strategy Option Strategy Option Strategy Option Strategy Option
SER . BUP . : Cl
Switch \E;Ez Switch VEN Switch m?; Switch VELHSIRT
CT SER+Li or THY
CIT+CT Augment egz:t: g:lm
Augment g:Rggﬁ CIT+Li or THY
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Variable selection for optimal treatment decision

Penalized A-learning

o Step 1: Estimate 7() and h(® using nonconcave penalized regression
(Fan and Li, 2001; Fan and Lv, 2011)
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Variable selection for optimal treatment decision

Penalized A-learning
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Variable selection for optimal treatment decision

Penalized A-learning

o Step 1: Estimate 7() and h(® using nonconcave penalized regression
(Fan and Li, 2001; Fan and Lv, 2011)

@ Step 2: Estimate (3, using penalized A-learning estimating equation
@ Step 3: Move backward to estimate V; using advantage function

o Step 4: Estimate 7(1) and h(!) using nonconcave penalized regression
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Variable selection for optimal treatment decision

Penalized A-learning

o Step 1: Estimate 7() and h(® using nonconcave penalized regression
(Fan and Li, 2001; Fan and Lv, 2011)

Step 2: Estimate (5, using penalized A-learning estimating equation
Step 3: Move backward to estimate V; using advantage function

Step 4: Estimate 7(1) and h(!) using nonconcave penalized regression

Step 5: Estimate (51 using penalized A-learning estimating equation
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Variable selection for optimal treatment decision
Step 1

o Logistic model for 7(2) and linear model for A(?)

.
@ - oPxTa) o) T
Q0 (X) 1+exp(xTa2)’ h (X) X ‘927
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Variable selection for optimal treatment decision
Step 1

o Logistic model for 7(2) and linear model for A(?)

(2)( ) =

@ Estimate ap and 6, using non-concave penalized regression

arg min —
ar€RP N

P
+ 3 P (1ad) AR,

j=t

= min —

arg

1+ exp(xTaz)’

LS~ AD) Y, X707 + 3 4265, A2)

0,€RP N 4

exp(XTOQ) h(2)(X) _ XT92

Z[Iog{l +exp(XT )} — AP XT )

n

j=1

v
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Variable selection for optimal treatment decision

Step 2
Add Dantzig selector (Candes and Tao, 2007) on A-learning equation

B> = arg min ||Ba]|1,
BreENP

where

1 . ~ A
N® = { b |[LXTdiag(A® — #O) Y = X0~ A o (X3 <06}

v
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Variable selection for optimal treatment decision

Add Dantzig selector (Candes and Tao, 2007) on A-learning equation

B2 = arg min_||Ba]|1,
BreENP

where

N® — {2517 X diog(A2) ~ 4O) (¥~ Xby — A® o (X52)) |l < A7) |

v

Estimate V-function

Vi = Vi + X7 Bo{I(X Ba > 0) — AP}
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Variable selection for optimal treatment decision
Step 4

o Logistic model for 7(!) and linear model for A(1)

exp(sT )

W(s) = P\ =1
o (s) 1+exp(sTa)’

V) (s) = sy,
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Variable selection for optimal treatment decision
Step 4

o Logistic model for 7(!) and linear model for A(1)

exp(sT )

_ P 2 W(g) =T
T+ exp(sTan)’ h(s) =s" 01,

7 (s) =
@ Estimate a1 and 65:

A 1 1
& = arg min ~ ;[Iog{l + exp(S5 1)} — A,(- )S,Tal]
=

q
+ 3 Ao D),
j=1
R 1 . J :
01 = arg min — Z(l — AE”)(V; —57601)* + Zﬂgl)(wjﬂa A%))a

01€R9 N
! i=1 j=1

v
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Variable selection for optimal treatment decision
Finally...

o A linear model for C(s) = s’ f31,
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Variable selection for optimal treatment decision
Finally...

o A linear model for C(s) = s’ f31,

o Estimate f1:

B = arg min ||61]]1,
pren®
where

"= {ﬁl 15T diag(A® — D)V — Sy — A o (Sp1)} e < NG

v
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Variable selection for optimal treatment decision
Finally...

o A linear model for C(s) = s’ f31,
o Estimate f1:

By = arg min ||B1]]1,
BreA®

N = {ﬁl : H%STdiag(Am — AWV — Sy — AW 0 (Sp1)} [ < S,

Estimated optimal regime

di(S)=1(B{S;>0) and da(X;)=1(B] X; > 0).
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Variable selection for optimal treatment decision

Theoretical performance guarantees

A non-asymptotic upper bound for difference of value function
EY(;((dfpt7 dgpt) - EY(;(dAl? dA2)a

EYg(di, db) = E[Yo + XJ Ba(da — AT)) + C(S$V) (e — AV
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Variable selection for optimal treatment decision

Theoretical performance guarantees
A non-asymptotic upper bound for difference of value function

EYG(dy™, d5") — EYg(dy, o),

EYG (dh, o) = E[Yo + X) Ba(d2 — ATY) + C(SE)(ch — AP

How to get there

@ Step 1: Weak oracle non-asymptotic bound for &s, 0,
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Theoretical performance guarantees
A non-asymptotic upper bound for difference of value function
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Variable selection for optimal treatment decision

Theoretical performance guarantees

A non-asymptotic upper bound for difference of value function
EYS(df™, &) — EY5(du, db),

EYG (dh, o) = E[Yo + X) Ba(d2 — ATY) + C(SE)(ch — AP

How to get there
@ Step 1: Weak oracle non-asymptotic bound for &s, 0,
@ Step 2: Error bound for ||32 — fa]|2
@ Step 3: Weak oracle non-asymptotic bound for &1, 0,
e Step 4: Error bound for ||31 — %]
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Variable selection for optimal treatment decision

Theoretical performance guarantees

A non-asymptotic upper bound for difference of value function
EYZ(dPP", dgP) — EYE(dy, db),

EYG (dh, o) = E[Yo + X) Ba(d2 — ATY) + C(SE)(ch — AP

How to get there

|

@ Step 1: Weak oracle non-asymptotic bound for &z, 02

@ Step 2: Error bound for ||32 — fa]|2

@ Step 3: Weak oracle non-asymptotic bound for &1, 0,

e Step 4: Error bound for ||31 — %]

o Step 5: Upper bound for EYg(d{™", dsP*) — EYg(dy, da)
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Some technical challenges

@ Deal with NP-dimensionality (log p = O(n?),0 < a < 1)
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Some technical challenges

@ Deal with NP-dimensionality (log p = O(n?),0 < a < 1)

o Dantzig selector rarely studied in random design

@ Nonconcave penalized regression never studied in random design
o
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model misspecification, even in fixed design
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Some technical challenges

@ Deal with NP-dimensionality (log p = O(n?),0 < a < 1)

o Dantzig selector rarely studied in random design
@ Nonconcave penalized regression never studied in random design
o

Nonconcave penalized regression not well studied in the present of
model misspecification, even in fixed design

Deal with model misspecification back to the first stage

Restricted eigenvalue (RE) condition in penalized A-learning
o Linear models: RE on XX
e In our setting: RE on X "diag(A — #)X

@ Substantiate difficulty due to the plug-in estimator 7!

Chengchun Shi (NCSU) Penalized A-learning March 6, 2016 15 / 24



Nonconcave penalized regression in random design

@ Need to establish concentration inequality for random variable and
random matrix

@ For example, need the following regularity condition:
max Amax Xy diag(1X)) Xu] = O(n),
J:

for some M C [1,2,...,p].
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Nonconcave penalized regression in random design

@ Need to establish concentration inequality for random variable and
random matrix

@ For example, need the following regularity condition:
p . ;
max Amax[ Xy diag(|1 X’ [)Xu] = O(n),

for some M C [1,2,...,p].

Model misspecification and least false parameter 37

* = arg min
By = arg min [1B1l]1,

where

A= {Br € BY - [E[SiAIL —n){C(S) = ST B}llse < o
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Weak oracle property in the presence of model misspecification

o & — a*, O — 0* (omit the superscript (2))
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Weak oracle property in the presence of model misspecification

o & — a*, O — 0* (omit the superscript (2))

@ when 7 or h is correct, o*, 8* the true parameter

@ when 7 or h is misspecified, a*, 8* some least false parameter
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Variable selection for optimal treatment decision

Weak oracle property in the presence of model misspecification

o & — a*, O — 0* (omit the superscript (2))
@ when 7 or h is correct, o*, 8* the true parameter
@ when 7 or h is misspecified, a*, 8* some least false parameter
o M, = supp(a*), My = supp(6*), so = [Ma| = O(n"),
so. = [Mg| = O(n®), h, h € (0,1/2), log p = O(n*), a2 € (0,1),
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Variable selection for optimal treatment decision

Weak oracle property in the presence of model misspecification

o & — o*, O — 0* (omit the superscript (2))
@ when 7 or h is correct, o*, 8* the true parameter
@ when 7 or h is misspecified, a*, 8* some least false parameter
o My = supp(a*), My = supp(0*), sa = |[My| = O(n"),
sp = |Mp| = O(n®), h, b € (0,1/2), log p = O(n®), a2 € (0,1),

Theorem (Weak oracle property of &, and (32)

Under certain conditions, there exists some constant T, v, € (0,1/2],
79, € (0,1/2], such that with prob. at least 1 — ¢/(n+ p),

o ame =0, ys =0,

o ||am, — iy, lle = O(n~7°2log n), |10y, — Oy, lloc = O(n7%2 log n)
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Variable selection for optimal treatment decision

Theorem (Error bound for /3,)

Under certain conditions, if )\22,,) = E; + E> + E3 + E4 defined below, then
as long as either (2 or h( is correct, then for any fixed 0 < 0s < 1, with
prob. at least 1 — ¢/(n+ p) for some constant ¢,

1205 /55

(1-6s) inf K3(ss,,1,2@(a2))’
0¢2€Ho¢2

182 — B2 <

where

E = O(\/Iog p/n), Ex = O(sa,n 2722 log? n + sp,n"27% log® n),
Es = O(03(\/Sa, logn/n+ w/5012)\%) (2)(d,,a2))),

Ex = O(0a(y/s9, log n/n + /5,350 057 (o)),

and o3 = Elha(X;) = X 031%, 0} = Elx? (X)) — n7" .

v
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Variable selection for optimal treatment decision

Theorem (Weak oracle property of &; and 91)

Under certain regularity condition, there exists some o, ,7g, € (0,1/2],
with probability at least 1 — ¢/(n+ q + p) for some constant ¢, the
estimators & and 01 must satisfy

MS M
©4, " =060,"=0,
o H@g”‘l

A Vig
16,

— aM|| = O(n~1 log n),
— Moy ||, = O(n"1 log n).
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Variable selection for optimal treatment decision

Theorem (Error bound for )

Assume MY = S°10 E, defined below. If either 7V or h(V) is correctly
specified, then there exists a constant C, such that for sufficiently large n
and some fixed 0 < 0s < 1, with probability at least 1 — ¢/(n+ p + q),

= O(y/log qlog?n/n), Es = O(sa,n 271 log® n + sy, n"271 log? n
E7 = O{o1(\/Say logn/n + 1/sal)\(l) (1)( dnay )}
Es = O{o2(y/se, logn/n+ V3 Ao 05 (Ao, )) 3,

Eo = O{00(\/5a; 108 1/ + /52, A5 91 (dnay ) + 70 + 155}
E1o = O(n** log n),

where 03 = E{C(S;) — ST 3;}?, 0% = E(hY) — ST 6%)2, and
02 = E{zV" - z((5,)}2.
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Variable selection for optimal treatment decision

Theorem (Error bound for EYg(dP", dsP*) — EY3(di, db))

Under certain conditions, if the probability density function of 50 B7 exists
and is bounded. For some fixed 0 < 05 < 1 and sufficiently large n, there

exists some constants C, ¢; and ¢» such that

0< EYO*(dO"t, dsP') — EY3(dy, db) <

— 4/3 c
208 + & P Er i 1Bl + &

22
c1w2pn€§x(2))\gn) g, log? n

)‘maX(zMgl Mg, )Hﬂﬂb

C2C2pmax(w) 3,7 551 |Og2 n

(1—05)2 inf K*s,1,9@(aq))  (1—-05)2 inf Ks, 1,00 (a

OélEHal

OéleHal

where

a5 = E[{C(S)) - S BT }°]-

[y
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STAR*D study

o Consider patients receiving BUP or SER at Level 2, and randomized
to MIRT or NTP at Level 3.

@ 73 patients that had complete record of 381 covariates at Level 3
@ Penalized A-learning: 3 variables at Level 2, 3 variables at Level 3

° Examina’gion of the method
1 ~ ~
v=-3" [Y,- + X Bo{do(X:) — AP 4+ ST By {ch(S)) — A,(.”}] .
i=1

Table: Estimated Values of Different Treatment Regimes and Cls

Treatment Regime Estimated Value 95% Cl on Diff
estimated optimal regime -10.04
BUP + NTP -13.41 [0.95,7.14]
BUP + MIRT -12.75 [0.62,5.96]
SER + NTP -12.63 [0.34,6.50]
SER + MIRT -11.97 [0.25,4.70]
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