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Data Integration
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Example I: A/B Testing

Taken from
https://towardsdatascience.com/how-to-conduct-a-b-testing-3076074a8458
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Example I: A/B Testing with Historical Data

4 / 39



Example II: Meta Analysis [Shi et al., 2018]
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Example III: Combining Observational Data
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Challenge: Distributional Shift

• Example I: In ridesharing, the nonstationarity of the environment → distributional
shift between experimental and historical datasets [Wan et al., 2021]

• Example II: In medicine, the heterogeneity in characteristics of treatment setting
→ distributional shift among different data sources [Shi et al., 2018]

• Example III: The observational data is subject to unmeasured confounding →
distributional shift between RCT and observational data
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Related Works

• Data integration for causal inference
• Example I: Leverage historical datasets under control [Li et al., 2023]
• Example II: Federated causal inference [Han et al., 2021, 2023]
• Example III: Combining RCT and observational data [Kallus et al., 2018, Yang and

Ding, 2020]

• Other related works
• Meta analysis & meta learning [DerSimonian and Laird, 1986]
• Transfer & federated learning [Li et al., 2022]
• Heterogeneous RL [Shi et al., 2018, Chen et al., 2024]
• Off-policy evaluation
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A/B Testing with Historical Data
Objective: combine experimental data with historical data to improve ATE estimation

Challenge: distributional shift between experimental and historical data
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Two Base Estimators
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A Naive Weighted Estimator

• Consider the weighted estimator

τ̂w = w τ̂e + (1− w)τ̂h,

for some properly chosen weight w ∈ [0, 1] to minimize its MSE(τ̂w ).
• The weight w reflects a bias-variance tradeoff. A large w can:

• Reduce bias of τ̂w caused by the distributional shift between the datasets
• Increase variance of τ̂w as a result of not fully leveraging the historical data

• Natural to consider the following naive estimator that minimizes an estimated MSE:

M̂SE(τ̂w ) = B̂ias
2
(τ̂w ) + V̂ar(τ̂w ).

We refer to this estimator as the non-pessimistic estimator.
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Theoretical Analysis

Three scenarios, depending on the bias
b = E(b̂) = E(τ̂h − τ̂e)

1. Small bias: b is much smaller than the
standard deviation of its estimator;

2. Moderate bias: b is comparable to or
larger than the standard deviation, yet falls
within the high confidence bounds of b̂;

3. Large bias: b is much larger than the
estimation error.

Three competing estimators:

1. EDO (experimental-data-only)
estimator which sets w = 1;

2. SPE (semi-parametrically efficient)
estimator [Li et al., 2023] developed
under the assumption of no bias;

3. Oracle estimator which optimizes
w to minimize MSE(τ̂w );
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Theoretical Analysis (Cont’d)

Bias Non-pessimistic estimator Optimal estimator

Zero Close to efficiency bound SPE/Oracle
Small Close to oracle MSE SPE/Oracle
Moderate May suffer a large MSE Oracle
Large Oracle property EDO/Oracle

• The oracle MSE denotes MSE of the oracle estimator

• The efficiency bound is the smallest achievable MSE among a broad class of regular
estimators [Tsiatis, 2006].
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Our Motivating Question

Can we develop an estimator that works well with moderate bias?
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Our Proposal

Main idea: reformulate the weight selection as an offline bandit problem

• Each weight w ∈ [0, 1] → an arm in bandit

• Negative MSE of τ̂w → reward of selecting an arm

Objective in bandit: choose the optimal arm that maximizes its reward.
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Multi-Armed Bandit

• The simplest RL problem

• A casino with multiple slot
machines

• Playing each machine yields an
independent reward.

• Limited knowledge (unknown
reward distribution for each
machine) and resources (time)

• Objective: determine which
machine to pick at each time to
maximize the expected cumulative
rewards
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Multi-Armed Bandit (Con’t)

• k-armed bandit problem (k machines)

• At ∈ {1, · · · , k}: arm (machine) pulled
(experimented) at time t

• Rt ∈ R: reward at time t
• Q(a) = E(Rt |At = a) expected reward

for each arm a (unknown)

• Objective: maximize
∑T

t=1 ERt .
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Greedy Action Selection

• Action-value methods:

Q̂(a) = N−1(a)
T−1∑
t=0

RtI(At = a)

where N(a) =
∑T−1

t=0 I(At = a)
denotes the action counter

• Greedy policy: argmaxa Q̂(a)
• Less-explored action → N(a) is small

→ inaccurate Q̂(a) → suboptimal
policy (see the plot on the right)
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The Optimistic Principle

• Used in online settings to balance
exploration-exploitation tradeoff

• The more uncertain we are about
an action-value

• The more important it is to
explore that action

• It could be the best action

• Likely to pick blue action

• Forms the basis for upper
confidence bound (UCB)
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Upper Confidence Bound

• Estimate an upper confidence Ut(a) for each action value such that

Q(a) ≤ Q̂t(a)+ Ut(a),

with high probability.
• Ut(a) quantifies the uncertainty and depends on Nt(a) (number of times arm a has
been selected up to time t)

• Large Nt(a) → small Ut(a);
• Small Nt(a) → large Ut(a).

• Select actions maximizing upper confidence bound

a∗ = argmax
a

[Q̂t(a)+ Ut(a)].

• Combines exploration (Ut(a)) and exploitation (Q̂t(a)).
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Offline Multi-Armed Bandit Problem

• k-armed bandit problem (k machines)

• At ∈ {1, · · · , k}: arm (machine) pulled
(experimented) at time t

• Rt ∈ R: reward at time t
• Q(a) = E(Rt |At = a) expected reward

for each arm a (unknown)

• Objective: Given {At ,Rt}0≤t<T ,
identify the best arm
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Greedy Action Selection (Non-pessimistic
Estimator)

• Action-value methods:

Q̂(a) = N−1(a)
T−1∑
t=0

RtI(At = a)

where N(a) =
∑T−1

t=0 I(At = a)
denotes the action counter

• Greedy policy: argmaxa Q̂(a)
• Less-explored action → N(a) is small

→ inaccurate Q̂(a) → suboptimal
policy (see the plot on the right)
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The Pessimistic Principle

• In offline settings

• The less uncertain we are about
an action-value

• The more important it is to use
that action

• It could be the best action

• Likely to pick red action

• Yields the lower confidence
bound (LCB) algorithm
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Lower Confidence Bound

• Estimate an lower confidence L(a) for each action value such that

Q(a) ≥ Q̂(a)− L(a),

with high probability.
• L(a) quantifies the uncertainty and depends on N(a) (number of times arm a has
been selected in the historical data)

• Large N(a) → small L(a);
• Small N(a) → large L(a).

• Select actions maximizing lower confidence bound

a∗ = argmax
a

[Q̂(a)− L(a)].
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Lower Confidence Bound (Cont’d)

• Set L(a) =
√

c log(T )/N(a) for some positive constant c where T is the sample
size of historical data

• According to Hoeffding’s inequality (link), when rewards are bounded between 0
and 1, the event

|Q(a)− Q̂(a)| ≤ L(a),

holds with probability at least 1− 2T−2c (converges to 1 as T → ∞).

25 / 39

https://en.wikipedia.org/wiki/Hoeffding%27s_inequality


Lower Confidence Bound (Cont’d)

• Q̂(4) > Q̂(3)

• T = 1605. Set c = 1.

• L(3)=
√
log(T )/N(3) = 0.272

• L(4)=
√

log(T )/N(4) = 1.215

• Q̂(3)−L(3)> Q̂(4)−L(4)
• Q̂(3)−L(3)> max(Q̂(1), Q̂(2))

• Correctly identify optimal action
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Theory

Define the regret, as the difference between the expected reward under the best arm and
that under the selected arm.

Theorem (Greedy Action Selection)

Regret of greedy action selection is upper bounded by 2maxa |Q̂(a)− Q(a)|, whose
value is bounded by 2

√
c log(T )/mina N(a) (according to Hoeffding’s inequality) with

probability approaching 1

• The upper bound depends on the estimation error of each Q-estimator

• The regret is small when each arm has sufficiently many observations

• However, it would yield a large regret when one arm is less-explored

• This reveals the limitation of greedy action selection
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Theory (Cont’d)

Theorem (LCB; see also Jin et al. [2021])

Regret of the LCB algorithm is upper bounded by 2
√

c log(T )/N(aopt) where aopt

denotes the best arm with probability approaching 1

• The upper bound depends on the estimation error of best arm’s Q-estimator only

• The regret is small when the best arm has sufficiently many observations

• This is much weaker than requiring each arm to have sufficiently many observations

• This reveals the advantage of LCB algorithm
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Back to Our Problem

Main idea: reformulate the weight selection as an offline bandit problem

• Each weight w ∈ [0, 1] → an arm in bandit

• Negative MSE of τ̂w → reward of selecting an arm

Nonpessimistic estimator chooses the arm that maximizes an estimated negative MSE

• It requires a uniform consistency condition: the estimated MSE converges to its
oracle value uniformly across all weights

• Underestimate the bias b → low estimated MSE for small weights → estimated
weight tends to be smaller than the ideal value → a significant bias in τ̂w

• This reveals the limitation of the nonpessimistic estimator when b is moderate or
large.
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Pessimistic Estimator

Main idea: select the arm that maximizes a lower bound of the negative MSE, or
equivalently, an upper bound of the MSE

• Uncertainty quantification: compute an uncertainty quantifier U for the estimated
error such that |b̂ − b| ≤ U with large probability.

• MSE estimation: use |b̂|+U as a pessimistic estimator for the bias b and plug this
estimator into the MSE formula to construct an upper bound of the MSE
M̂SEU(τ̂w ).

• Weight selection: select w that minimizes the upper bound M̂SEU(τ̂w ).
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Theoretical Analysis

Bias Non-pessimistic estimator Pessimistic estimator Optimal estimator

Zero Close to efficiency bound Same order to oracle MSE SPE/Oracle
Small Close to oracle MSE Same order to oracle MSE SPE/Oracle
Moderate May suffer a large MSE Oracle property Oracle
Large Oracle property Oracle property EDO/Oracle

• The oracle MSE denotes MSE of the oracle estimator.

• The efficiency bound is the smallest achievable MSE among a broad class of regular
estimators [Tsiatis, 2006].
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Simulation Study

The effectiveness of different estimators is determined by the magnitude of the bias. To
validate our theory, we further classify b into different regimes as follows

• Small bias regime (SPE estimator is expected to be optimal): |b| ≤ c1

√
Var(b̂);

• Moderatel bias regime (the proposed pessimistic estimator is expected to be

optimal): c1 <
|b|√
Var(b̂)

≤ c2;

• Large bias regime (EDO estimator is expected to be optimal): |b| > c2

√
Var(b̂).

According to our theory, we set c1 = 1 and c2 =
√
log(n). This ensures:

• Scenarios where variance dominates the bias are categorized within the small bias
region.

• When the bias exceeds the established high confidence bound, it is classified under
the large bias regime.
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Simulation Study: Bandit Simulation
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Ridesharing Data-based Sequential Simulation

Pessimistic estimator shows robustness in dealing with distributional shift
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Simulation Study: Confidence Intervals

• While maintaining nominal
coverage, the pessimistic
estimator yields narrower
confidence intervals compared to
the EDO estimator

• Improvement in efficiency by
incorporating historical data.
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Summary

• Policy evaluation using both experimental and historical datasets, allowing
distributional shifts between the two datasets.

• Two weighted estimators that leverage both data sources.

• The proposed non-pessimistic estimator chooses the weight by minimizing an
estimated MSE.

• The proposed pessimistic estimator further employs the pessimistic principle to
boost its robustness.

• Our theoretical and empirical analyses identify the most effective estimator within
each regime.
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