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What are large language models

ChatGPT 40 &, Share

What are large language models?

Large Language Models (LLMs) are powerful machine learning models trained to
understand and generate human-like text. They are a type of deep neural network,
typically based on the transformer architecture, and are trained on vast amounts of text
data—books, articles, websites, and more.

Key Characteristics:

* Large scale: They have billions (or even trillions) of parameters. Parameters are the
internal weights the model learns during training.

Pretrained: LLMs are initially trained in a general way on large datasets Using self-
supervised learning. This phase helps them learn grammar, facts, reasoning, and

even some world knowledge.

+ @ search -

Understanding Large Language Models Overview

What are large language models?

Large Language Models (LLMs) are advanced artificial intelligence (Al) systems designed to

generate, and mani text. They are a type of deep learning model
trained on vast amounts of text data to predict and produce coherent language based on input
prompts.
Key Features of Large Language Models:
1. Massive Scale
Trained on billions or even trillions of words from books, articles, code, and web content
Built using neural networks (typically transformers) with billions or trillions of parameters.
2. Transformer Architecture
Most LLMs use the Transformer model (introduced by Google in 2017), which relies on self-
attention mechanisms to process words in context.
Examples: GPT (OpenAl), PaLM (Google), LLaMA (Meta), Claude (Anthropic)

3. General-Purpose Capabili

Can perform a wide range of tasks:

B REmeR) @ wEen (0]

We can ask the LLMs themselves!
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Language model sizes to Mar/2023
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An era of LLMs

New major models released per month/x hours
LifeArchitect.ai/models (data from LifeArchitect.ai/models-table)

® Per month = New model released every x hours
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New derivative models released per month/x minutes
LifeArchitect.ai/models (data from Hugging Face)

®m Per month = New model released every x minutes
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How to train an LLM

Pre-training

Massive
EBEEE autoregressive
e.g., books xt-token
wikipedia NERTIORS
prediction 3290 464 262 2251413

@ X: a sentence or prompt.
@ Y responses.

o Z: Z =LV v(1)
represents the resulting
human feedback

Post-training

X: What is the capital of UK?

supervised
answers fine-tuning
Y: London.
Human X: What is the capital of UK?
— )
preference : .
data reinforcement learning

from human feedback 1) @
Y*V: France. Y**: London.
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Reinforcement learning (RL)

Andrew Barto and
Richard Sutton Receive
AM. Turing Award

The scientists received computing’s highest
honor for developing the theoretical
foundations of reinforcement learning,

a key method for many types of Al i«
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Reinforcement learning (Cont’d)

Time t-1 Time t Time t+1

Action R,_, Action, R, Action R

Environment \{/ —_—_ \{/ _—_ \g —

State S,_ State S, State Sy

Objective: find an optimal policy that maximizes the cumulative reward

1 Reward A, Reward A Reward ...
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Reinforcement learning from human feedback
(RLHF)

2017 2022
Deep Reinforcement Learning Training language models to follow instructions
from Human Preferences with human feedback

Paul F Christiano Jan Leike Tom B Brown Long Ouyang™ Jeff Wu*  Xu Jiang*  Diogo Almeida®  Carroll L. Wainwright*
OpenAl DeepMind nottombrown@gmail.com

paul@openai.com 1eike@google. con Pamela Mishkin®*  Chong Zhang  Sandhini Agarwal Katarina Slama  Alex Ray

Mgi;:;]\l\/i[;;tic Sg:::]\,ll;i%g Dm—(i)‘;:":‘l)dei John Schulman Jacob Hilton  Fraser Kelton Luke Miller =~ Maddie Simens
miljanm@google.com legg@google.com damodei@openai.com

Amanda Askell Peter Welinder Paul Christiano*!
Jan Leike* Ryan Lowe*
OpenAl
First introduction to deep RLHF First successful application of RLHF to LLM
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Reward learning in RLHF

Large language models h R
: How to get the reward in
need to align our

the learning process?
preferences and values. ) 9P
——

N
We can set the reward
for the Al answers.

Evaluating complex
tasks is inherently

We
and tell which

Models may struggle to
one is . This is y 99

. . learn from
much easier than give i abeolut
in absolute
the absolute scores. It
scores.
and is
for us.
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Reward learning in RLHF (Cont’d)

Preference Data Preference Model Maximum likelihood
YD) o — 1 X YO) 7(X,Y)

Response Response
[ Hrw)- (7

Bradley-Terry (BT) model (Bradley & Terry, 1952) is most widely adopted to model
human preferences:

p(Y® > Y@ |X) = 6(r(X, YD) — r(X, Y@))
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BT model: an illustrative example

exp(r(tea))
exp(r(tea)) + exp(r(coffee))

p(tea > coffee) =

Suppose 70% of people like tea and 30% of
people like coffee. The reward model should

satisfy:

Coffee

1
1 + exp(r(coffee) — r(tea))

7
0.7 — r(tea) — r(coffee) = log(§> = 0.847
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Baseline algorithm |: PPO-based approach

Step1

Collect demonstration data,
and train a supervised policy.

A promptis
sampled from our ~
Explain the moon
prompt dataset. landing to a 6 year old
!
\J
Alabeler
demonstrates the @
desired output 7
behavior. Some Pe;vle went
to the moon..
This data is used -
to fine-tune GPT-3 25
with supervised
learning. 2

Step2

Collect comparison data,
and train a reward model.

A prompt and
several model -

Explain the moon
outputs are landing to a 6 year old

sampled.

Eslingoty.  Exlain .

e o,

Alabeler ranks
the outputs from
best to worst.

0-0-0-0
This data is used "M
to train our ./}?g\.’\.
reward model. N
0-0-0-0

Step3
Optimize a policy against
the reward model using
reinforcement learning.

A new prompt

is sampled from WMZ‘W
the dataset. about frogs
|
. \J
The policy D
enerates 2
g >
an output. \.\sa{/
|
\J

|

The reward model :M
Py

roverdor &

the output. b

v

The reward is

used to update e

the policy

using PPO.

— from InstructGPT (Ouyang et al., 2022)
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Baseline algorithm Il: DPO-based approach

Reinforcement Learning from Human Feedback (RLHF) Direct Preference Optimization (DPO)
e label rewards ity
b 7\ b
t:EVW] > —> reward model LM policy t%] > —_— final LM
N
preference data maximum sample completions preferencedata o0 0o
likelihood reinforcement learning likelihood

Figure 1: DPO optimizes for human preferences while avoiding reinforcement learning (Rafailov et al., 2023)

i ived i 7*(y|x)
Reward function can be derived in closed- N
Qrm using the optimal policy r(y, )= ﬂ log( ref(y | X) ) i C(xﬁ
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BT model can be misspecified

Both PPO- and DPO-based algorithms rely on BT model assumption for human
preference modelling, which is likely violated due to transitivity ...

What's the best way to learn a new language?

Practice Use apps like Join a local »

speaking daily Duolingo and language group ~ et A
and immerse review flashcards. and travel to

yourself in the countries where

culture through the language is |
media and spoken. % < J:)
conversation.
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Even when BT model is correct

® PPO-based algorithms are highly sensitive to the reward model. Misspecifying the
reward can

1. lead to reward hacking (Skalse et al., 2022; Laidlaw et al., 2024)
2. misguide policy learning (Kaufmann et al., 2023; Zheng et al., 2023; Chen et al., 2024)

® DPO-based algorithms are highly sensitive to the reference policy (Liu et al., 2024;
Gorbatovski et al., 2024; Xu et al., 2024)
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Baseline algorithm Ill: preference-based approach

General preference modelling (GPM, Zhang et al., 2024)

Preference Score

instruct x | resp yl GPM rep ion v(y1|x)
0 slyly2) | s(yly3)
a ) q >
instruct x | response y2 GPM repi v(y2|x) <R Vi,Vj> s(y2,y1) 0
5 s(y3,y1) | s(y3,y2)
instruct x | response y3 GPM rep v(y3|x)

s(y2,y3)

Identity preference optimization
(IPO, Azar et al., 2023)

g 1 v
max ml}n [Ey(l) ~ 7,y® ~ ,,p(y( ) > y( )) mfx Eyo ~ 7,50 ~ ﬂrefp(y(l) > y(2))
z

Nash learning from human feedback (NLHF, Munos et al., 2023)
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Accurate preference model is vital

Many preference-based approaches do not require the BT model assumption. However,
they still suffer from potential misspecification of preference model

Should | start a pizzeria or sushi restaurant?

Preference: pizza vs sushi

e |n Italy, 80% vs 20%
® In Japan, 10% vs 90%

— Taken from Weijie's slides
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In summary, all three baseline algorithms suffer
from certain model misspecification

Robust to misspecified:  preference model reward model reference policy

PPO-based X X v

Reward-based DPO-based X v/ X

RLHF IPO v - P
Preference-based GPM X - v

DRPO v v v

Table: Robustness of different algorithms to model misspecification. Our algorithm is denoted by DRPO,
short for doubly robust preference optimization.

21/32



Our contribution

Methodology

1. Propose a robust and efficient estimator for preference evaluation
2. Leveraging this estimator, develop a doubly robust preference
optimization (DRPO) algorithm for LLM fine-tuning

I'_'_‘I Theory ¢ 2% Application to LLMs

BN
====  Superior and more robust performance than
both PPO- and DPO-based approaches

1. Doubly robust
2. Statistically efficient
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Doubly robust (DR) methods

Doubly robust methods originate from the missing data and causal inference literature
(see e.g., Robins et al., 1994; Scharfstein et al., 1999)

Causal
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Doubly robust methods (Cont’d)

Consider the estimation of average treatment effect (ATE) in causal inference. These
methods estimate two models:

e A propensity score model for ® An outcome regression model for
treatment assignment mechanism patient’s outcome given treatment
® Similar to reference policy in LLMs ® Similar to reward model in LLMs

F

e Consistency of the ATE estimator only requires one model to be correct
® When both are correct, the ATE estimator becomes semiparametrically efficient
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Doubly robust methods (Cont’d)

These methods were later extensively studied and extended to

e Dynamic treatment regimes (Zhang et al., 2012; 2013)

Off-policy learning and evaluation (Dudik et al., 2014)

Causal machine learning (Chernozhukov et al., 2018)
Conditional independence testing (Shah and Peters, 2020)
Reinforcement learning (Kallus and Uehara, 2022; Liao et al., 2022)
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When DR methods meet LLMs
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Figure: a summary of our methodology. 7,.r denotes the estimated reference
policy and g denotes the estimated preference model.
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When DR methods meet LLMs (Cont’d)

¢ Preference evaluation: for any target policy 7, evaluate its total preference
p(m) =y e Py = y®)
We estimate two models from the data:
1. a preference model 2. a reference policy

and develop a doubly robust and semiparametrically efficient estimator p()

¢ Preference optimization:

7 = argmax p(w) — BKL(7, Tref)
K
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Application to IMDb dataset

Lo —o— Mt v/, g 7
® Task: produce positive movie reviews 0.8
® Objective: evaluate total preference of w ¢
a DPO-trained policy over a SFT-based =
reference policy o4
¢ Ground truth: 0.681 0.2

200 400 600 800 1000 1200 1400
Sample Size
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Applications to TL;DR and HH datasets

Pairwise Win Rate Matrix (TL;DR) Pairwise Win Rate Matrix (HH)
1.0 0.70
08
0.60
. 0.502 0.523 0.630 0.55 g
3]
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£
0.763 4 0523 - 0.623 0455
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-040
-02
g 0.162 0.152 0.237 g 0.430 0.370 0.377 -035
-00 -030
DRPO DRPO PPO DPO DRPO DRPO DPO PPO
BT GPM BT GPM

Figure: Pairwise win rate matrices between different methods across two datasets. Left: TL;DR dataset.
Right: HH dataset. Each entry indicates how often the row method outperforms the column method;
higher values denote better performance.
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A summary of our theory

(

Doubly Robust Preference Evaluation

Corollary 3

|

T

Corollary 4

\

Double robustnes:

of p(n)

)

Non-asymftotic

MSE of p ()

Semi-parametric
efficiency

(

Doubly Robust Preference Optimisation

~N

Theorem 5 Theorem 7
Corollary 6 without B
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~
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More details

® Preference evaluation
® Double robustness of p(m): MSE of p(w) decays to zero when ejther reference policy or
preference model (not necessarily both) is correct B
® Semiparametric efficiency: When both models are “approximately” correct, p(7)
achieves the efficiency bound (the smallest-possible MSE one can hope for p(7))

® Preference optimization
® Double robustness of 7: Regret of 7 decays to zero when either reference policy or
preference model (not necessarily both) is correct
® Sub-optimality gaps:
® PPO: O(n" Y2 +||F—r|) ® DPO: O(n™ Y2 4 ||[Frer — rer||)
® DRPO: O(n~ Y2+ ||F — r||||[Frer — mrer )

31/32



Thank You!

@Papers can be found on my personal website

callmespring.github.io
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