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Reinforcement Learning Applications
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Mobile Health Self Driving

Ridesharing Game



Reinforcement Learning in Healthcare

3

Sepsis

• Objective: evaluate patients’ long-term outcomes under 
different treatment strategies.

• Treatment: intravenous fluids (IF) vs. vasopressors (VA).

• Outcome: SOFA score: measures organ failure.
• Covariates: gender, weight, etc.

Longitudinal data of sepsis patients from MIMIC-III.



Sequential Decision Making (Healthcare)
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Treatment
VA

Outcome
SOFA score: 10

Transition 

Time t Time t + 1

Temperature: 96 F

Doctor

Outcome
SOFA score: 8

Doctor

Treatment
IF

Temperature: 98 F

SOFA score measures organ failure, lower scores indicate better outcomes.



Sequential Decision Making
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 Action
At ∼ π(At |Ot)

Reward
Rt ∼ PR(Rt |Ot, At)

Action
At+1 ∼ π(At+1 |Ot+1)

 Reward
        Rt+1 ∼ PR(Rt+1 |Ot+1, At+1)

Transition  P(Ot+1 |Ot , At)

Time t Time t + 1

Observation  Ot Observation  Ot+1

Decision Maker Decision Maker



Policy
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Policy  : observation  probability 
distribution over the actions.

• One size fits all: . 

• Tailored, stochastic: . 

π ≡ {πt}t ↦

πO
t (IF |o) = 1,∀o

πT
t (VA | female) = 0.7

Question: how can we measure the effectiveness of a policy?



Policy Evaluation
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Aim: evaluate the target value  under policy .

•  is an intervention, and  is analogous to 
the potential outcome.

𝔼π(Rt |O1) π
π 𝔼π(Rt |O1)

Sepsis example:
• .
• : expected SOFA score at time 

, for a female patient if we had applied IF.

πO
t (IF |o) = 1,∀t, ∀o

𝔼π(Rt | female)
t



Policy Evaluation by Direct Implementation (On-Policy)
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Implement
IFA1 =

Time 1 Time t

Transition ………

        R1         Rt

O1 Ot

 can be approximated using sample average.𝔼π(Rt |O1)

Implement
IFAt =



Limitation of On-Policy Evaluation
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Directly implementing a policy involves 
potential risks and high costs.

Ridesharing Self Driving



Off-policy Evaluation (OPE)
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OPE: evaluate  using offline data (observed)
  generated by 

.

𝔼π(Rt |O1)
{(Oi,t, Ai,t, Ri,t) : 1 ≤ i ≤ N, 1 ≤ t ≤ T}
πb

Behavior Policy
Ai,t ∼ πb(Ai,t |Oi,t)

Ri,t ∼ PR(Ri,t |Oi,t, Ai,t)

Oi,t ∼ PO(Oi,t |Oi,t−1, Ai,t)

Target Policy
Ai,t ∼ π(Ai,t |Oi,t)

TargetObserved

Oi,t ∼ PO(Oi,t |Oi,t−1, Ai,t)

Ri,t ∼ PR(Ri,t |Oi,t, Ai,t)



Action  
A = a

Reward
R

Target

Connection to Causal Inference
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; binary action: , .
• .
• CATE: .

• ATE: .

T = 1 a = 0 1
∀o, π(1 |o) = 1;  and π′ (0 |o) = 1

𝔼π(R |o)−𝔼π′ (R |o)
𝔼O [𝔼π(R |O)−𝔼π′ (R |O)]

Observation  
O ∼ PO(O)



Physicians’ Preferences in Sepsis Data
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Three dosing levels: 
none, low, and high.

Limited impact of VA (Zhou et 
al.,  2022)

Frequency of Three Dose Levels in Physician Strategies



Target Policies
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Compare two policies:

• One size fits all policy  : always low IF.

• Tailored policy :  a low IF if SOFA
; a high IF dose otherwise.

πO

πT

< 11

Frequency of Three Dose Levels in Physician Strategies

SOFA score  has a 90% mortality rate 
(Jones et al., 2009).

> 11



Off-policy Evaluation (OPE)
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OPE: evaluate  using offline data generated by 
.

𝔼π(Rt |O1)
πb

Behavior Policy
Ai,t ∼ πb(Ai,t |Oi,t)

Ri,t ∼ PR(Ri,t |Oi,t, Ai,t)

Oi,t ∼ PO(Oi,t |Oi,t−1, Ai,t)

Target Policy
Ai,t ∼ π(Ai,t |Oi,t)

TargetObserved

Oi,t ∼ PO(Oi,t |Oi,t−1, Ai,t)

Ri,t ∼ PR(Ri,t |Oi,t, Ai,t)



Classical Key Assumptions in RL
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Ot

Rt

AtOt−1

Rt−1

At−1 Ot+1

(i) Markov: .

(ii)  Stationarity:  the transition  does not depend on .
(iii) Homogeneity: the subjects are i.i.d. 

Pt(Ot+1, Rt |Ot, At, {Oj, Aj, Rj}1≤j<t) = Pt(Ot+1, Rt |Ot, At)

P( ⋅ , ⋅ | ⋅ , ⋅ ) t



OPE Method: Backward Induction under Classical Assumptions
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Step 
(Target)

t + 1

Step 1

Step 2

Ot At∼πt

Rt

Ot−1 At−1∼

μπ
t

O1 A1∼π1

μπ
2

.....
.....

.....
.....

.....
.....

μπ
t ≡ 𝔼π(Rt |Ot) = ∑

a

𝔼(Rt |Ot, a)

Qπ
t (Ot,a)

πt(a |Ot)

μπ
t−1 ≡ 𝔼π(Rt |Ot−1) = ∑

a

𝔼(μπ
t |Ot−1, a)

Qπ
t−1(Ot−1,a)

πt−1(a |Ot−1)

μπ
1 ≡ 𝔼π(Rt |O1) = ∑

a

𝔼(μπ
2 |O1, a)

Qπ
1(O1,a)

π1(a |O1)

.....
.....



OPE Method: Backward Induction under Classical Assumptions
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Step 
(Target)

t + 1

Step 1

Step 2

Ot At∼πt

Rt

Ot−1 At−1∼

μπ
t

O1 A1∼π1

μπ
2

.....
.....

.....
.....

.....
.....

μπ
t ≡ 𝔼π(Rt |Ot) = ∑

a

𝔼(Rt |Ot, a)

Qπ
t (Ot,a)

πt(a |Ot)

μπ
t−1 ≡ 𝔼π(Rt |Ot−1) = ∑

a

𝔼(μπ
t |Ot−1, a)

Qπ
t−1(Ot−1,a)

πt−1(a |Ot−1)

μπ
1 ≡ 𝔼π(Rt |O1) = ∑

a

𝔼(μπ
2 |O1, a)

Qπ
1(O1,a)

π1(a |O1)

.....
.....



OPE Method: Backward Induction under Classical Assumptions
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Step 
(Target)

t + 1

Step 1

Step 2

Ot At∼πt

Rt

Ot−1 At−1∼

μπ
t

O1 A1∼π1

μπ
2

.....
.....

.....
.....

.....
.....

μπ
t ≡ 𝔼π(Rt |Ot) = ∑

a

𝔼(Rt |Ot, a)

Qπ
t (Ot,a)

πt(a |Ot)

μπ
t−1 ≡ 𝔼π(Rt |Ot−1) = ∑

a

𝔼(μπ
t |Ot−1, a)

Qπ
t−1(Ot−1,a)

πt−1(a |Ot−1)

μπ
1 ≡ 𝔼π(Rt |O1) = ∑

a

𝔼(μπ
2 |O1, a)

Qπ
1(O1,a)

π1(a |O1)

.....
.....



Impact of Three Key Assumptions
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Consider backward induction, 

(i) Markov:  and  only depends on current simplify 

decision process.

(ii)  Stationarity:  can be learned using all  time points.

(iii) Homogeneity:  can be learned using all  subjects.

• (ii) and (iii) allow us to use the data effectively.

Qπ
t πt ⟹

Qπ
t T
Qπ

t N



Possible Violation of Assumptions in Practice
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i. Heterogeneous treatment responses (Evans 
et al. 2021).

ii. Information over 10 years  non-stationary.
iii.Questionnaire responses may only partially 

reflect the patient's state  non-Markov.

⟹

⟹

Sepsis

No method addresses all three 
challenges simultaneously.



Literature Review
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t → ∞Heterogeneou
s

Non-stationary Non-Markov

Fitted-Q

Importance 
Sampling    fixed 

Double RL

t ≪ N

t
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Markov holds only when conditioned on individual- and 
time-specific latent factors .{Ui}N

i=1 and {Vt}T
t=1

Our General Framework

Li,t
= (Ui, Vt)

Oi,t

Ri,t

Ai,t

Li,t

Oi,t+1

Ri,t+1

Ai,t+1

Li,t+1
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• Heterogeneity: , e.g., genetic information.
• Non-stationary: , e.g., disease progression.

• Non-Markov: .

{Ui}
{Vt}

(Oi,t+1, Ri,t) /⊥⊥ {Oi,j, Ai,j, Ri,j}1≤j<t | (Oi,t, Ai,t)

Our General Framework

Oi,t

Ri,t

Ai,t

Li,t

Oi,t+1

Ri,t+1

Ai,t+1

Li,t+1



Adjust for Unobserved Latent Factors
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Inspired by the two-way fixed effects model:
•Practical model to account for unobserved variables.
• Model

.

• Solving

.

Ri,t = θi
⏟

subject effect

+ λt
⏟

time effect

+ r(Oi,t, Ai,t)

main effect

+ εi,t

̂r = argminr∈ℛ
1

NT ∑
i,t

[Ri,t−θi − λt−r(Oi,t, Ai,t)]2



Classical 2WFE Model Our Model

Comparison with the 2WFE Model

25

Oi,t−1

Ri,t−1

Ai,t−1

Li,t−1

Oi,t

Ri,t

Ai,t

Li,t

Oi,t

Ri,t

Ai,t

Li,t

Oi,t+1

Ri,t+1

Ai,t+1

Li,t+1



Additive Assumption
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The transition is additive w.r.t.   and :

with .

ui, vt (o, a)
p(Oi,t+1 |ui, vt, o, a)

= ωupui
(Oi,t+1 |ui)+ωvpvt

(Oi,t+1 |vt) + ω0p0(Oi,t+1 |o, a),

ωu + ωv+ω0 = 1

 Markov Assumption. ω0 = 1 ⟹



Two-way Structure of the Q-function
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Define 
Qπ

i,k(o, a) = 𝔼π(Ri,t |Oi,k = o, Ai,k = a, ui, vk) .

Theorem 1       Under the additive 
assumption,

, 
where  and  are non-stochastic. 

Qπ
i,k(o, a) = θi,k + λt,k+rk(o, a)

θi,k λt,k



Estimand

28

We focus on the individual- and time-specific value:
 .

Sepsis data:
• Individualization enables tailored interventions. 
• Timing is related to disease progression:  early intervention 
for sepsis within the first 6–12 hours is crucial.

ηπ
i,t ≡ 𝔼π(Ri,t |Oi,1, Ui, V1)



Other Estimands
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Individual- and time-specific value:
 .

Other interests:

• Individual-specific value:  .

• Time-specific value:  .

• Average reward:   .

ηπ
i,t ≡ 𝔼π(Ri,t |Oi,1, Ui, V1)

ηπ
i ≡

1
T

T

∑
t=1

ηπ
i,t

ηπ
t ≡

1
N

N

∑
i=1

ηπ
i,t

ηπ ≡
1

NT

N

∑
i=1

T

∑
t=1

ηπ
i,t



Backward Induction with Two-way Fixed Effects
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.....
.....

.....
.....

Step 
(Target)

t + 1

Oi,t
Ai,t∼πt

Ri,t

Step 1

Step 
Oi,t−1 Ai,t−1∼

μπ
i,t

Oi,1 Ai,1∼π1

μπ
i,2

.....
.....

Li,t

Li,t−1

Li,1

μπ
i,t = 𝔼π(Ri,t |Oi,t, ui, vt) = ∑

a

Qπ
i,t(Oi,t, a)πt

(a |Oi,t)

μπ
i,t−1 = ∑

a

𝔼(μπ
i,t |Oi,t−1, a, ui, vt−1)

Qπ
i,t(Oi,t,a)

πt−1(a |Oi,t−1)

ηπ
i,t = μπ

i,1 = ∑
a

𝔼(μπ
i,2 |Oi,1, a, ui, v1)

Qπ
i,1(Oi,1,a)

π1(a |Oi,1)

.....
.....



Algorithm
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Pseudocode for Estimating 
1. Set .
2. for   do
3.      Solve 

4.        

5.       Compute 

6. end for 
7. Output: 

ηπ
i,t̂μπ

i,t+1 = Ri,t
k = t, t − 1,⋯,1

( ̂θ i,k, ̂λ t,k, ̂r k) = argminθi,k,λt,k,rk ∑
i,j

[ ̂μπ
i,k+1 − θi,k − λt,k−rk(Oi,j, Ai,j)]

2

̂Q π
i,k(o, a) = ̂θ i,k + ̂λ t,k+ ̂r k(o, a)

̂μπ
i,k = ∑

a

̂Q π
i,k(Oi,k, a)π(a |Oi,k)

̂η π
i,t = ̂μπ

i,1



Uniform Convergence Rate
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Theorem 2        Under some regularity conditions,  

.max
i,t

̂η π
i,t − ηπ

i,t = Op ( log(NT)/ min(N, T))



Recap: Literature Review

33

t → ∞Heterogeneou
s

Non-stationary Non-Markov

Fitted-Q

Importance 
Sampling    fixed 

Double RL

Our Method

t ≪ N

t



Asymptotically Normality
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Theorem 3      Under some regularity 
conditions, we have 

 .min(N, T)σ−1 ( ̂η π
i,t − ηπ

i,t) D 𝒩(0,1)



Numerical Study I: D4RL
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D4RL dataset is specifically designed for 
evaluating RL algorithms. 

Maze2D task, the 4 settings differ in maze 
layouts and the level of difficulty.



D4RL Results
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Numerical Study II: Sensitivity Analysis
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The additive assumption is violated in each scenario.



Sensitivity Analysis Results
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Review: Sepsis Data
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Sepsis

• Treatment: intravenous fluids vs. vasopressors.

• Reward: SOFA score: measures organ failure.
• Observations: gender, age, weight, etc.

Longitudinal data of sepsis patients,
.N = 500, T = 50



Target Policies
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Compare two policies:

• One size fits all policy  : always low IF.

• Tailored policy :  a low IF if SOFA
; a high IF dose otherwise.

πO

πT

< 11

Frequency of Three Dose Levels in Physician Strategies



Results
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ηT
t − ηO

t ηT
i − ηO

i

Value
difference

Value difference over t Value difference over i



Summary
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This work addresses violations of the Markov, 
stationary, and homogeneity assumptions.

Future Works 
• RL with interactive effects.
• RL under a confounded environment.



Research Overview
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My research focuses on addressing challenges arising from 
real-world applications.
• PhD Research: decision making with high-dimensional 
data.

• Current Research: 
• RL under partial identification.
• Decision making with fairness constraint.
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Bian, Z., Shi, C., Qi, Z., and Wang, L. (2024). “Off-
policy evaluation in doubly inhomogeneous 
environments”. Journal of the American Statistical 
Association, in press.

Thank you!!



Policy Evaluation VS. Policy Learning
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• Two tasks, each with its own distinct importance.
• Policy learning: obtain the optimal policy.
• Policy evaluation is fundamental to RL: 

i. Policy learning usually involves OPE;
ii. Policy/algorithm comparison: statistical inference.



Error Propagation
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min
θi,k,λt,k,rk

∑
i,j

[ ̂μπ
i,k+1 − θi,k − λt,k−rk(Oi,j, Ai,j)]

2

Issue: outcome  is estimated.
As the number of iterations ,  becomes unstable.

̂μπ
i,k+1

↑ ̂μπ
i,k+1

Under our setting, the Bellman error decays exponentially, 
preventing error accumulation.

 We can learn when .⟹ t → ∞



Early Stopping
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The Bellman error decays exponentially.
• Early stopping can be applied.

• No need to run  iterations when  is large.
• Theoretically,  iterations is sufficient.

t t
log(Nt)



Assumptions about the Behavior Policy
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Depends on the algorithms:

• Importance sampling:  is bounded.

• Q-learning: depends on the parametrization.
• Linear approximation: invertible matrix.
 and  cannot “differ” significantly.

π
πb

π πb



Standard Causal Assumptions
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• No unmeasured confounders.
• Positivity.
• No interference.



Extension: Model-based Approach
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O1

R̃ 1 ∼ p̃R

A1∼π1 .. .. Õ t−1 At−1∼πt−1 Õ t At∼πt

R̃ t ∼ p̃RR̃ t−1 ∼ p̃R

p̃O p̃O

1. Using working model    and 

, e.g., VAE, EM, etc, to generate  
using     and . 

2. Evaluate value using Monte Carlo. 

p̃O(Oi,t+1 |Oi,t, Ui, Vt) p̃R

(Ri,t |Oi,t, Ui, Vt) ( Õ i,t, Ã i,t, R̃ i,t)
p̃O, π, p̃R



Uniform Convergence Rate
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Theorem 2        Under some regularity conditions,  

.max
i,t

̂η π
i,t − ηπ

i,t = O(L−s/d) + Op ( log(NT)/ min(N, T))
• : number of basis functions.
• : smoothness parameter.
• : dimension.

L
s
d

• Assume Q-function is Hölder smooth.
• Use linear sieve (e.g., B-splines, wavelet) to 
approximate the Q-function.



Relaxing the Additive Assumption

52

The transition and the reward is additive in  and :

•

with .
• .

ui, vt (o, a)
p(Oi,t+1 |ui, vt, o, a)

= ωupui
(Oi,t+1 |ui(a))+ωvpvt

(Oi,t+1 |vt(a)) + ω0p0(Oi,t+1 |o, a),

ωu + ωv+ω0 = 1
Ri,t = θi(Ai,t) + λt(Ai,t)+r(Ai,t, Oi,t) + εi,t


