Reinforcement Learning **Beyond Classical Assumptions**

Joint work with Chengchun Shi, Zhengling Qi, and Lan Wang

Zeyu Bian University of Miami

Reinforcement Learning Applications

Mobile Health

Ridesharing

Self Driving

Reinforcement Learning in Healthcare

Sepsis

Longitudinal data of sepsis patients from MIMIC-III.

- Objective: evaluate patients' long-term outcomes under different treatment strategies.
- Covariates: gender, weight, etc.

Sequential Decision Making (Healthcare)

SOFA score measures organ failure, lower scores indicate better outcomes.

Temperature: 98 F

Sequential Decision Making

Policy $\pi \equiv \{\pi_t\}_t$: observation \mapsto probability distribution over the actions. • One size fits all: $\pi_t^O(IF \mid o) = 1, \forall o$. • Tailored, stochastic: $\pi_t^T(VA \mid \text{female}) = 0.7$.

uestion: how can we measure the effectiveness of a policy?

Aim: evaluate the target value $\mathbb{E}^{\pi}(R_t | O_1)$ under policy π . • π is an intervention, and $\mathbb{E}^{\pi}(R_t | O_1)$ is analogous to

the potential outcome.

Sepsis example:

- $\pi_t^O(IF|o) = 1, \forall t, \forall o.$ • $\mathbb{E}^{\pi}(R_{t} | \text{female})$: expected SOFA score at time t, for a female patient if we had applied **IF**.

Policy Evaluation by Direct Implementation (On-Policy)

 $\mathbf{E}^{\pi}(R_{t} \mid O_{1})$ can be approximated using sample average.

Limitation of On-Policy Evaluation

Directly implementing a policy involves potential risks and high costs.

Ridesharing

Self Driving

Off-policy Evaluation (OPE)

Observed $\mathbf{K}_{i,t} \sim P_R(R_{i,t} \mid O_{i,t}, A_{i,t})$ ĘĘ **Behavior Policy** $A_{i,t} \sim \pi^b(A_{i,t} \mid O_{i,t})$ $O_{i,t} \sim P_O(O_{i,t} | O_{i,t-1}, A_{i,t})$

OPE: evaluate $\mathbb{E}^{\pi}(R_t | O_1)$ using offline data (observed) $\{(O_{i,t}, A_{i,t}, R_{i,t}) : 1 \le i \le N, 1 \le t \le T\}$ generated by

T = 1; binary action: a = 0, 1. • $\forall o, \pi(1 \mid o) = 1; \text{ and } \pi'(0 \mid o) = 1.$ • CATE: $\mathbb{E}^{\pi}(R \mid o) - \mathbb{E}^{\pi'}(R \mid o)$. • ATE: $\mathbb{E}_O\left[\mathbb{E}^{\pi}(R \mid O) - \mathbb{E}^{\pi'}(R \mid O)\right]$.

Physicians' Preferences in Sepsis Data

Three dosing levels: high none, low, and high.

LL low

Limited impact of VA (Zhou et al., 2022)

none

Frequency of Three Dose Levels in Physician Strategies

Frequencies 0.3 0.2 0.1

Compare two policies:

- One size fits all policy π^{O} : always low IF.
- Tailored policy π^T : a low IF if SOFA

< 11; a high IF dose otherwise.

SOFA score > 11 has a 90% mortality rate (Jones et al., 2009).

Frequency of Three Dose Levels in Physician Strategies

Off-policy Evaluation (OPE)

OPE: evaluate $\mathbb{E}^{\pi}(R_t | O_1)$ using offline data generated by

Classical Key Assumptions in RL

- (iii) Homogeneity: the subjects are i.i.d.

(i) Markov: $P_t(O_{t+1}, R_t | O_t, A_t, \{O_j, A_j, R_j\}_{1 \le j \le t}) = P_t(O_{t+1}, R_t | O_t, A_t).$ (ii) Stationarity: the transition $P(\cdot, \cdot \mid \cdot, \cdot)$ does not depend on t.

OPE Method: Backward Induction under Classical Assumption

 $\boldsymbol{\mu}_t^{\pi} \equiv \mathbb{E}^{\pi}(R_t \mid O_t) = \sum \mathbb{E}(R_t \mid O_t, a) \boldsymbol{\pi}_t(a \mid O_t)$ $Q_t^{\pi}(O_t,a)$ $\mu_{t-1}^{\pi} \equiv \mathbb{E}^{\pi}(R_t | O_{t-1}) = \sum \mathbb{E}(\mu_t^{\pi} | O_{t-1}, a) \pi_{t-1}(a | O_{t-1})$ $Q_{t-1}^{\pi}(O_{t-1},a)$ $\mu_1^{\pi} \equiv \mathbb{E}^{\pi}(R_t | O_1) = \sum \mathbb{E}(\mu_2^{\pi} | O_1, a) \pi_1(a | O_1)$ $Q_1^{\pi}(O_1,a)$

OPE Method: Backward Induction under Classical Assumption

 $\boldsymbol{\mu}_t^{\boldsymbol{\pi}} \equiv \mathbb{E}^{\boldsymbol{\pi}}(\boldsymbol{R}_t \mid \boldsymbol{O}_t) = \sum \mathbb{E}(\boldsymbol{R}_t \mid \boldsymbol{O}_t, \boldsymbol{a}) \boldsymbol{\pi}_t(\boldsymbol{a} \mid \boldsymbol{O}_t)$ $Q_t^{\pi}(O_t,a)$ $\mu_{t-1}^{\pi} \equiv \mathbb{E}^{\pi}(R_t | O_{t-1}) = \sum_{t=1}^{\infty} \mathbb{E}(\mu_t^{\pi} | O_{t-1}, a) \pi_{t-1}(a | O_{t-1})$ \mathcal{A} $Q_{t-1}^{\pi}(O_{t-1},a)$ $\mu_1^{\pi} \equiv \mathbb{E}^{\pi}(R_t | O_1) = \sum \mathbb{E}(\mu_2^{\pi} | O_1, a) \pi_1(a | O_1)$ $Q_1^{\pi}(O_1,a)$

OPE Method: Backward Induction under Classical Assumption

 $\boldsymbol{\mu}_t^{\boldsymbol{\pi}} \equiv \mathbb{E}^{\boldsymbol{\pi}}(\boldsymbol{R}_t \mid \boldsymbol{O}_t) = \sum \mathbb{E}(\boldsymbol{R}_t \mid \boldsymbol{O}_t, \boldsymbol{a}) \boldsymbol{\pi}_t(\boldsymbol{a} \mid \boldsymbol{O}_t)$ $Q_t^{\pi}(O_t,a)$ $\mu_{t-1}^{\pi} \equiv \mathbb{E}^{\pi}(R_t | O_{t-1}) = \sum_{\alpha} \mathbb{E}^{(\mu_t^{\pi} | O_{t-1}, \alpha) \pi_{t-1}}(\alpha | O_{t-1})$ \mathcal{A} $Q_{t-1}^{\pi}(O_{t-1},a)$ $\mu_1^{\pi} \equiv \mathbb{E}^{\pi}(R_t | O_1) = \sum \mathbb{E}(\mu_2^{\pi} | O_1, a) \pi_1(a | O_1)$ \mathcal{A} $Q_1^{\pi}(O_1,a)$

- Consider backward induction, (i) Markov: Q_t^{π} and π_t only depends on current \Longrightarrow simplify decision process. (ii) Stationarity: Q_t^{π} can be learned using all T time points. (iii) Homogeneity: Q_t^{π} can be learned using all N subjects.
 - (ii) and (iii) allow us to use the data effectively.

Impact of Three Key Assumptions

Possible Violation of Assumptions in Practice

Sepsis

i. He et ii. In iii.Q re

- i. Heterogeneous treatment responses (Evans
 - et al. 2021).
- ii. Information over 10 years \implies non-stationary.
- iii.Questionnaire responses may only partially
 - reflect the patient's state \implies non-Markov.

No method addresses all three challenges simultaneously.

Literature Review

	Heterogeneou S	Non-stationary	Non-Markov	$t \rightarrow o$
Fitted-Q				$t \ll N$
Importance Sampling				fixedt
Double RL				

Markov holds only when conditioned on individual- and time-specific latent factors $\{U_i\}_{i=1}^N$ and $\{V_t\}_{t=1}^T$.

Our General Framework

- Heterogeneity: $\{U_i\}$, e.g., genetic information.
- Non-stationary: $\{V_t\}$, e.g., disease progression.

• Non-Markov: $(O_{i,t+1}, R_{i,t}) \perp \{O_{i,j}, A_{i,j}, R_{i,j}\}_{1 \le j < t} \mid (O_{i,t}, A_{i,t}).$

Adjust for Unobserved Latent Factors

+
$$r(O_{i,t}, A_{i,t})$$
 + $\varepsilon_{i,t}$.

main effect

$$\sum_{i,t} \left[R_{i,t} - \theta_i - \lambda_t - r(O_{i,t}, A_{i,t}) \right]^2.$$

Comparison with the 2WFE Model

Classical 2WFE Model

Our Model

$A_{i,t+1}$

The transition is additive w.r.t. u_i, v_f and (o, a): $p(O_{i,t+1} | u_i, v_t, o, a)$ $= \omega_{u} p_{u_{i}}(O_{i,t+1} | u_{i}) + \omega_{v} p_{v_{t}}(O_{i,t+1} | v_{t}) + \omega_{0} p_{0}(O_{i,t+1} | o, a),$

with $\omega_{\mu} + \omega_{\nu} + \omega_{0} = 1$.

$\omega_0 = 1 \implies$ Markov Assumption.

Additive Assumption

Two-way Structure of the Q-function

Define $Q_{ik}^{\pi}(o,a) = \mathbb{E}^{\pi}(R_{i,t} | O_{i,k} = o, A_{i,k} = a, u_i, v_k).$

Theorem 1 Under the additive assumption, $Q_{i,k}^{\pi}(o,a) = \theta_{i,k} + \lambda_{t,k} + r_k(o,a),$ where $\theta_{i,k}$ and $\lambda_{t,k}$ are non-stochastic.

We focus on the individual- and time-specific value:

Sepsis data:

- Individualization enables tailored interventions.
- Timing is related to disease progression: early intervention for sepsis within the first 6–12 hours is crucial.

 $\eta_{i,t}^{\pi} \equiv \mathbb{E}^{\pi}(R_{i,t} \mid O_{i,1}, U_i, V_1).$

Individual- and time-specific value: $\eta_{i,t}^{\pi} \equiv \mathbb{E}^{\pi}(R_{i,t} | O_{i,1}, U_i, V_1).$ Other interests:

Individual-specifi

• Time-specific va

Average reward:

Other Estimands

fic value:
$$\eta_i^{\pi} \equiv \frac{1}{T} \sum_{t=1}^T \eta_{i,t}^{\pi}$$
.
alue: $\eta_t^{\pi} \equiv \frac{1}{N} \sum_{i=1}^N \eta_{i,t}^{\pi}$.
: $\eta^{\pi} \equiv \frac{1}{NT} \sum_{i=1}^N \sum_{t=1}^T \eta_{i,t}^{\pi}$.

Backward Induction with Two-way Fixed Effects

 $\mu_{i,t}^{\pi} = \mathbb{E}^{\pi}(R_{i,t} | O_{i,t}, u_i, v_t) = \sum Q_{i,t}^{\pi}(O_{i,t}, a) \pi_t$ $(a \mid O_{i,t})$ $\mu_{i,t-1}^{\pi} = \sum_{a} \mathbb{E}(\mu_{i,t}^{\pi} | O_{i,t-1}, a, u_i, v_{t-1}) \pi_{t-1}(a | O_{i,t-1})$ $Q_{i.t}^{\pi}(O_{i,t},a)$ $\eta_{i,t}^{\pi} = \mu_{i,1}^{\pi} = \sum \mathbb{E}(\mu_{i,2}^{\pi} | O_{i,1}, a, u_i, v_1) \pi_1(a | O_{i,1})$ \mathcal{A} $Q_{i,1}^{\pi}(O_{i,1},a)$

Pseudocode for Estimating $\eta_{i,t}^{n}$ 1. Set $\hat{\mu}_{i,t+1}^{\pi} = R_{i,t}$. 2. for $k = t, t - 1, \dots, 1$ do Solve 3. 4. $\widehat{Q}_{i,k}^{\pi}(o,a) = \widehat{\theta}_{i,k} + \widehat{\lambda}_{t,k} + \widehat{r}_{k}(o,a)$ 5. Compute $\hat{\mu}_{i,k}^{\pi} = \sum \widehat{Q}_{i,k}^{\pi} (O_{i,k}, a) \pi(a \mid O_{i,k})$ \mathcal{A} 6. end for 7. Output: $\hat{\eta}_{i,t}^{\pi} = \hat{\mu}_{i,1}^{\pi}$

Algorithm

 $(\hat{\theta}_{i,k}, \hat{\lambda}_{t,k}, \hat{r}_{k}) = \operatorname{argmin}_{\theta_{i,k}, \lambda_{t,k}, r_{k}} \sum \left[\hat{\mu}_{i,k+1}^{\pi} - \theta_{i,k} - \lambda_{t,k} - r_{k}(O_{i,j}, A_{i,j}) \right]^{2}$

Uniform Convergence Rate

Theorem 2 Under some regularity conditions, $\max_{i,t} \left| \hat{\eta}_{i,t}^{\pi} - \eta_{i,t}^{\pi} \right| = O_p \left(\sqrt{\log(NT) / \min(N, T)} \right).$

Recap: Literature Review

	Heterogeneou S	Non-stationary	Non-Markov	$t \rightarrow 0$
Fitted-Q				$t \ll N$
Importance Sampling				fixed t
Double RL				
Our Method				

Asymptotically Normality

Theorem 3 Under some regularity conditions, we have $\sqrt{\min(N,T)}\sigma^{-1}\left(\hat{\eta}_{i,t}^{\pi}-\eta_{i,t}^{\pi}\right) \xrightarrow{D} \mathcal{N}(0,1).$

Numerical Study I: D4RL

D4RL dataset is specifically designed for evaluating RL algorithms.

layouts and the level of difficulty.

Maze2D task, the 4 settings differ in maze

D4RL Results

Table 1: MSEs of the estimated value (four targets) using our proposed methods and other competing methods for Maze2D with N = T = 20 over 20 replications. The best method with smallest MSE in each column were highlighted with blue.

		Maze2	D-oper	l	Maze2D-umaze				Maze2D-medium				Maze2D-large			
	η^{π}	η^{π}_i	η^{π}_t	$\eta_{i,t}^{\pi}$	η^{π}	η^{π}_i	η^{π}_t	$\eta_{i,t}^{\pi}$	η^{π}	η^{π}_i	η^{π}_t	$\eta_{i,t}^{\pi}$	η^{π}	η_i^π	η^{π}_t	
20PE	0.01	0.45	0.30	0.75	0.02	0.47	0.28	0.73	0.00	0.45	0.31	0.76	0.00	0.45	0.32	0
DM1	0.01	0.49	0.34	0.83	0.03	0.52	0.33	0.82	0.01	0.51	0.35	0.85	0.00	0.50	0.36	0
DM2	3.75	4.25	3.72	4.23	2.98	3.49	3.93	4.43	0.75	1.26	1.12	1.64	0.55	1.07	0.96	1
IS1	0.66	1.17	1.26	3.63	0.42	0.93	0.39	2.06	0.35	0.87	0.62	2.56	0.62	1.13	1.12	3
IS2	1.52	2.03	6.10	10.12	1.81	2.32	4.65	8.06	0.93	1.44	3.43	6.67	1.28	1.80	5.22	8
IS3	0.01	0.52	0.35	0.85	0.03	0.54	0.33	0.84	0.01	0.52	0.35	0.87	0.00	0.52	0.36	0
DR1	0.25	2.99	0.44	7.03	0.99	12.81	3.11	60.60	0.15	1.80	0.38	7.45	0.21	1.41	0.28	4
DR2	0.25	3.09	1.16	13.04	0.13	2.68	0.65	9.86	0.18	2.35	0.64	8.82	0.21	1.95	0.64	8
DR3	0.01	0.51	0.36	0.86	0.03	0.54	0.33	0.84	0.01	0.52	0.36	0.87	0.00	0.52	0.36	0

Numerical Study II: Sensitivity Analysis

Table 2: A summary of environments in the sensitivity analysis.

Environment	Ι	II	III	IV
Reward Transition	additive clustering	additive interactive	interactive additive	interactive interactive

The additive assumption is violated in each scenario.

Table 3: MSEs of the estimated values using our proposed methods with other competing methods. The best method with the smallest MSE in each column is highlighted in blue.

	Scenario 1			Scenario 2			Scenario 3				Scenario 4					
	η^{π}	η^{π}_i	η^{π}_t	$\eta_{i,t}^{\pi}$												
20PE	0.01	0.48	0.17	3.54	0.66	0.73	0.10	1.78	0.41	0.51	0.07	4.65	0.03	0.17	0.05	9.00
DM1	0.01	1.40	0.85	4.02	0.01	1.26	1.26	3.06	0.04	0.51	0.37	4.36	0.02	0.02	0.08	8.37
DM2	0.37	1.77	0.98	4.16	0.39	1.64	0.85	2.31	0.81	1.27	0.51	4.08	0.77	0.77	0.73	8.25
IS1	0.20	1.60	0.58	5.25	0.84	2.08	0.55	3.41	0.63	1.09	0.63	4.74	0.30	0.30	0.78	8.83
IS2	0.05	1.45	0.13	4.82	1.26	2.50	0.31	3.43	0.93	1.40	0.33	4.48	0.41	0.41	0.36	8.23
IS3	2.89	4.28	3.14	6.32	7.04	8.29	4.63	6.09	7.47	7.94	5.17	8.74	6.48	6.49	5.72	13.24
DR1	0.16	1.56	0.35	5.14	0.53	1.78	0.29	3.00	0.67	1.14	0.33	4.54	0.24	0.24	0.37	8.36
DR2	0.23	1.63	0.85	6.32	0.58	1.82	0.25	3.67	0.95	1.41	0.60	5.07	0.22	0.22	0.37	8.38
DR3	2.21	3.61	2.54	5.72	7.02	8.26	4.61	6.08	6.84	7.31	4.66	8.24	5.54	5.54	4.86	12.38

Review: Sepsis Data

Sepsis

Longitudinal data of sepsis patients, N = 500, T = 50.

Reward: SOFA score: measures organ failure.
Observations: gender, age, weight, etc.

Compare two policies:

- One size fits all policy π^{O} : always low IF.
- Tailored policy π^T : a low IF if SOFA
 - < 11; a high IF dose otherwise.

Frequency of Three Dose Levels in Physician Strategies

Results

This work addresses violations of the Markov, stationary, and homogeneity assumptions.

Future Works • RL with interactive effects. RL under a confounded environment.

My research focuses on addressing challenges arising from real-world applications.

- PhD Research: decision n data.
- Current Research:
 - RL under partial identification.
 - Decision making with fairness constraint.

PhD Research: decision making with high-dimensional

ation. rness constraint.

Thank you!!

Bian, Z., Shi, C., Qi, Z., and Wang, L. (2024). "Offpolicy evaluation in doubly inhomogeneous environments". Journal of the American Statistical Association, in press.

Policy Evaluation VS. Policy Learning

- Two tasks, each with its own distinct importance.
 - Policy learning: obtain the optimal policy.
 - Policy evaluation is fundamental to RL:
 - i. Policy learning usually involves OPE;
 - ii. Policy/algorithm comparison: statistical inference.

Issue: outcome $\hat{\mu}_{i,k+1}^{\pi}$ is estimated. As the number of iterations \uparrow , $\hat{\mu}_{i,k+1}^{\pi}$ becomes unstable.

preventing error accumulation. \implies We can learn when $t \rightarrow \infty$.

Error Propagation

- Under our setting, the Bellman error decays exponentially,

- The Bellman error decays exponentially. • Early stopping can be applied. No need to run t iterations when t is large.
- Theoretically, log(Nt) iterations is sufficient.

Assumptions about the Behavior Policy

- Depends on the algorithms: • Importance sampling: $\frac{\pi}{ab}$ is bounded.
- Q-learning: depends on the parametrization.
 - Linear approximation: invertible matrix.
 - π and π^b cannot "differ" significantly.

Standard Causal Assumptions

- Positivity.
- No interference.

No unmeasured confounders.

Extension: Model-based Approach

1. Using working model $\tilde{p}_{O}(O_{i,t+1} | O_{i,t}, U_i, V_t)$ and \tilde{p}_R $(R_{i,t} | O_{i,t}, U_i, V_t)$, e.g., VAE, EM, etc, to generate $(O_{i,t}, A_{i,t}, \widetilde{R}_{i,t})$ using \tilde{p}_{O} , π , and \tilde{p}_{R} . 2. Evaluate value using Monte Carlo.

Uniform Convergence Rate

- approximate the Q-function.
- Assume Q-function is Hölder smooth. • Use linear sieve (e.g., B-splines, wavelet) to

Theorem 2 Under some r $\max_{i,t} \left| \hat{\eta}_{i,t}^{\pi} - \eta_{i,t}^{\pi} \right| = O(L^{-s/d})$

- L: number of basis functions. • *s*: smoothness parameter. • d: dimension.

regularity conditions,
$$O + O_p \left(\sqrt{\log(NT) / \min(N, T)} \right)$$

The transition and the reward is additive in u_i, v_f and (o, a): • $p(O_{i,t+1} | u_i, v_t, o, a)$ with $\omega_{\mu} + \omega_{\nu} + \omega_{0} = 1$. • $R_{i,t} = \theta_i(A_{i,t}) + \lambda_t(A_{i,t}) + r(A_{i,t}, O_{i,t}) + \varepsilon_{i,t}$

Relaxing the Additive Assumption

$= \omega_{u} p_{u}(O_{i,t+1} | u_{i}(a)) + \omega_{v} p_{v}(O_{i,t+1} | v_{t}(a)) + \omega_{0} p_{0}(O_{i,t+1} | o, a),$

