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Causal Inference Applications
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(c) E-commerce Platforms (d) Ridesharing

We focus on applications in ridesharing 3/50



Applications in Ridesharing
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Applications in Ridesharing (Cont’d)
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Project |

Dynamic Causal Effects Evaluation in A/B Testing with a
Reinforcement Learning Framework

Joint work with Xiaoyu Wang, Shikai Luo, Hongtu Zhu, Jieping Ye and Rui Song
JASA, accepted
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A/B Testing
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Motivation: Order Dispatch
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Our project is motivated by the need for comparing the long-term rewards of different
order dispatching policies in ridesharing platforms
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Data

® Data from an online experiment that last for two weeks

30 minutes/1 hour as one time unit

¢ Time-varying variables S;: e.g., number of drivers (supply), number of call orders
(demand)

® Treatment A;: new policy v.s. old policy; adopts an alternating-time-interval

(switchback) design

Outcome R;:

® Answer rate (percentage of call orders being responded by drivers)
® Completion rate (percentage of call orders being completed)
® Drivers’ income
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Challenges

1. The existence of carryover effects:
® Under the alternating-time-interval (or switchback) design

OD—E—®

® Past actions will affect future outcomes

2. The need for early termination:

® Each experiment takes a considerable time (at most 2 weeks)
® Early termination to save time and budget

3. The need for adaptive randomization:

® Maximize the total reward (e.g., epsilon-greedy)
® Detect the alternative faster

To our knowledge, no existing test has addressed three challenges simultaneously

10/50



lllustration of the Carryover Effects
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Adopting the Closest Driver Policy
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Some Time Later - --
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Miss One Order
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Consider a Different Action
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Able to Match All Orders
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Existence of Carryover Effects

past actions — distribution of drivers — future rewards
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Limitations of Existing A/B tests

® Most existing tests cannot detect carryover effects

Ho: The old policy (A = 0) has larger cumulative rewards
® 7{1: The new policy (A = 1) has larger cumulative rewards
Example 1. S; ~ N(0,0.25), R, = S; + 6A;

Example 2. S; =0.55;_1 + A;_1 + N(0,0.25), R, = S;

‘ Example 1 ‘ t-test 0.76 ‘ DML-based test 1.00 ‘ our test 0.98 ‘
‘ Example 2 ‘ t-test 0.04 ‘ DML-based test 0.06 ‘ our test 0.73 ‘

Table: Powers of t-test, DML-based test (Chernozhukov et al., 2018) and the proposed test with
T =500, =0.1

18 /50



Contributions and Advances of Our Proposal

® Introduce an RL framework for A/B testing

1.
2.
3.

Allow to measure long-term rewards using value function
Model carryover effects using the dynamic system transitions (address Challenge 1)
Enable consistent estimation with a single time series

® Propose an original test procedure for comparing long-term rewards of two policies

1.
2.
3.

allows for sequential monitoring (address Challenge 2)

allows for online updating

applicable to a wide range of designs, including the Markov design,
alternating-time-interval design and adaptive design (address Challenge 3)
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An RL framework for A/B Testing

e What is the RL framework

® Why use the RL framework
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What is the RL Framework

Time t-1 Time t Time t+1
i a a ﬁ
Action R,_, Action, R, Action R
A Reward A, Reward Ay Reward .
Environment \{/ _— \{/ —_— \g ——p
State S,_ State S, State Sy

Objective: find an optimal policy that maximizes the cumulative reward
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RL Designed for Sequential Decision Making

THE ULTIMATE GO CHALLENGE
GAME 3 OF 3

27 MAY 2017
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Markov Decision Process

¢ RL algorithms: trust region policy optimization (Schulman et al., 2015), deep
Q-network (DQN, Mnih et al., 2015), asynchronous advantage actor-critic (Minh et
al., 2016), quantile regression DQN (Dabney et al., 2018).

® Foundations of RL:

® Markov decision process (MDP, Puterman, 1994)
® Markov assumption: conditional on the present, the future and the past are
independent,

Set1, Re 1L {(S, Aj, Rj)}j<t|Se, Ae.

® Stationarity assumption: The Markov transition function is stationary over time.

® By introducing an RL framework, we use the MDP model to formulate the A/B
testing problem
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Markov Assumption
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Markov Assumption
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Stationarity Assumption
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Why use the RL framework

Allows to measure the long-term rewards using the value function in RL

Ve(s) =Y 7'E*(R|So = s),

t>0

® The expectation is taken by assuming treatment a is repeatedly assigned all the time

The discounted factor 0 < ~ < 1 represents the trade-off between immediate
and future rewards

= 0 leads to “myopic” evaluation

close to 1 leads to “far-sighted” evaluation
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Why use the RL framework (Cont’d)

e Allows to model the carryover effects using the dynamic state transitions

1. A;_1 impacts R; indirectly through its effect on S;
2. S; shall include important mediators between A;_; and R;

® Most existing works require the independence assumption

68 8 6
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Why use the RL framework (Cont’d)

® Markov and stationarity assumptions allow us to consistently estimate the policy's
value based on a single time series

® These assumptions are mild

® Concatenate observations over multiple decision points to meet Markovanity
® Include dummy variables (e.g., peak/off-peak hours) in the state to meet stationarity
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Contributions and Advances (Cont’d)

Propose a test procedure for comparing long-term rewards of two policies
1. allows for sequential monitoring
2. allows for online updating

3. applicable to a wide range of designs, including the Markov design,
alternating-time-interval design and adaptive design
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Contributions and Advances (Cont’d)

Carryover  Sequential Switchback

Algorithm effects  monitoring design

Two-sample t-test X X v

Classical sequential tests X 4 v

Bojinov & Shephard (2019) 4 X X
V-learning

(Luckett et al., 2020) v X X
Double RL

(Kallus & Uehara, 2019) v x x

CausalRL v/ v/ v/

(our proposal)
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Methodology

e Apply temporal difference learning with sieve method to evaluate value difference
and provide uncertainty quantification (Shi et al., 2021, JRSSB)

¢ Adopt the a-spending approach (Lan & DeMets, 1983) for sequential monitoring

® Develop a bootstrap-assisted procedure for determining the stopping boundary

® The numerical integration method designed for classical sequential tests is not
applicable in adaptive design, due to the carryover effects

32/50



a-Spending Approach

A
a = 0.05 Alpha-spending function
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a-Spending Approach

A
a = 0.05

Conduct the test
a(Tl)
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a-Spending Approach

A
a = 0.05

If not rejected, collect additional
data and test again

a(Ty)

Aa = o(T,) — o(T))
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a-Spending Approach

A

a = 0.05 If not rejected, test

based on all data

Aa = a(T) — a(T5)
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Theory

Theorem (Validity and Consistency)

Under the Markov, alternating-time-interval or adaptive design, the proposed test can
control type-l error and is consistent against alternatives that converge to the null at
the parametric rate
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Theory (Cont’d)

Theorem (Undersmoothing and Efficiency)
Suppose sieve method is used for function approximation in temporal difference learning.

1. Undersmoothing is not needed to guarantee that the resulting value estimator has a
tractable limiting distribution.

2. The value estimator is semiparametrically efficient.

e Sieve estimators of conditional expectations are idempotent (Shen et al., 1997)
® The proposed test will not be overly sensitive to the number of basis functions

¢ Cross-validation can be employed to select the basis functions
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Simulation
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Simulation

Under the null, the blue line denotes the alpha-spending function and the grey line denotes the empirical size
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Simulation

Under the alternative, empirical powers
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Application to Ridesharing Platform

¢ Data: a given city from December 3rd to 16th (two weeks)

30 minutes as one time unit, sample size = 672

e State:

1. number of drivers (supply)
2. number of requests (demand)
3. supply and demand equilibrium metric (mediator)

e Action: new policy A=1vs. old A=0

Reward: drivers’ income

The new policy is expected to have better performance
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Application to Ridesharing Platform (Cont’d)

® The proposed test

n Xe}
S S
o o
S S\
n Te}
— 7 - ]
o o
— 7 -
0 Te}
o 7| o 7|
Test Stat
e S ] Rej. Boundary
o o
T T T T T T T T T T T T T T T T
7 8 9 10 11 12 13 14 7 8 9 10 11 12 13 14
(a) AA Experiment: Day (b) AB Experiment: Day

e t-test: fail to reject Ho in A/B experiment with p-value 0.18
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Project Il

Deeply-Debiased Off-Policy Interval Estimation

Jjoint work with Runzhe Wan, Victor Chernozhukov, and Rui Song
ICML, 2021 (long talk, top 3% of submissions)
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Off-Policy Interval Estimation

Objective: Evaluate the impact of a target policy offline using historical data
generated from a different behavior policy and provide rigorous uncertainty
quantification (healthcare, automated driving, ridesharing, robotics, e.g.)

Consider the reinforcement learning (e.g., MDP) setting

® Most existing methods focus on providing point estimators

Main idea: Develop a deeply-debiasing process using higher order influence
function (Robins et al., 2017)
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Method
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Theory

Theorem

Under certain mild conditions, the proposed method is:

® robust as the value estimator is consistent when one of the three nuisance functions
is correct;

e efficient as it achieves the semiparametric efficiency bound;

e flexible as it achieves nominal coverage allowing nuisance function to converge at
any rate.
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Comparison

Algorithm Allow Semiparametric Rate requirement
& High-D? efficient under MDP?  on nuisance function
Jiang & Li (2016) v X op(n~1/4)

Sieve method
(Shi et al. 2021)

X v
Double RL / / op(n_1/4)
v v

Op(”_1/4)

(Kallus & Uehara, 2019)
Deeply-Debiased OPE Op(n™")
(our proposal) for any k > 0
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Simulation
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Thank You!

@Papers and softwares can be found on my personal website
callmespring.githuo.io
Hiring! | have a postdoc position. More information can be found
https://jobs.lse.ac.uk/Vacancies/W/3537/0/335760/156539/

research-officer—-in-statistics
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