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In this talk, we will focus on ...

¢ Reinforcement learning in offline real-world applications (e.g., mobile health,
ridesharing).

® Most works consider developing RL algorlthms in games (online)
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e Statistical inference in reinforcement learning
® |s statistical inference useful in reinforcement leaning?
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Intern Health Study (IHS)

¢ Data: Intern Health Study (NeCamp
et al., 2020)

® Subject: First-year medical interns
working in stressful environments (e.g.,
long work hours and sleep deprivation)

® Objective: Promote physical
well-being

¢ |Intervention: Determine whether to
send certain text message to a subject

1:31PM 94 wioe 138 PM

Dashboard

On a scale of 1-10 how
was your mood today?

3ne 317 318 Done

Cancel

(ii) Mood EMA

R
(iiii) Notifications
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Intern Health Study (Cont’d)

Table 1. Examples of 6 different groups of notifications.

Notification groups  Life insight Tip
Mood Your mood has ranges from 7 to 9 over the past 2 weeks. Treat yourself to your favorite meal. You’ve earned it!
The average intern’s daily mood goes down by 7.5%
after intern year begins.
Activity Prior to beginning internship, you averaged 117 to Exercising releases endorphins which may improve mood. Staying
17,169 steps per day. How does that compare with your  fit and healthy can help increase your energy level.
current daily step count?
Sleep The average nightly sleep duration for an intern is 6 Try to get 6 to 8 hours of sleep each night if possible. Notice how

hours 42 minutes. Your average since starting internship
is 7 hours 47 minutes.

even small increases in sleep may help you to function at peak capac-
ity & better manage the stresses of internship.
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Sequential Decision Making

Time t-1 Time t Time t+1
? ? ?
- ﬂ a a
- - -
Action R,_, Action R, Action R,
Ay Reward A, Reward A Reward ...
Environment \Q _— \Q —_— \{/ _—
State S,_, State S, State S,

Objective: find an optimal policy that maximizes the cumulative reward
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The Agent’s Policy

® The agent implements a mapping 7; from the observed data to a probability
distribution over actions at each time step

® The collection of these mappings ™ = {7}, is called the agent’s policy:
7rt(a|§) = Pr(At = a|§t = §),

where S; = (S¢, Rt —1,A¢ 1,81, -, Ro, Ag, Sp) is the set of observed data
history up to time t.

e History-Dependent Policy: 7; depends on S;.
e Markov Policy: 7r; depends on S; only through S;.

e Stationary Policy: 7 is Markov & 7 is homogeneous in t, i.e., mg =71 = - - -.
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The Agent’s Policy (Cont’d)

History-dependent policy

Markov
policy

Stationary
policy
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Reinforcement Learning

¢ RL algorithms: trust region policy optimization (Schulman et al., 2015), deep
Q-network (DQN, Mnih et al., 2015), asynchronous advantage actor-critic (Minh et
al., 2016), quantile regression DQN (Dabney et al., 2018).

® Foundations of RL:
® Markov decision process (MDP, Puterman, 1994): ensures the optimal policy is
stationary, and is not history-dependent.
® Markov assumption: conditional on the present (e.g., S, A;), the future (R;, S¢4+1)
and the past data history are independent
® Stationarity assumption: the Markov transition kernel, e.g., the conditional
distribution of (R, S¢t1) given (S = s, A; = a) is stationary over time
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Stationarity Assumption

e Stationarity assumption is likely to hold in many OpenAl Gym environments

® However, it can be violated in the real world environment
® Treatment effects can be nonstationary

® COVID vaccine effectiveness decays over time
® The treatment effect of activity suggestions may transition from positive to negative

Environments can be nonstationary
® COVID mutations, invention of vaccines
® |n the context of mobile-delivered prompts, the longer a person is under intervention,
the more they may habituate to the prompts or become overburdened

Without stationarity, the optimal policy is nonstationary as well

Crucial for policy maker to take nonstationarity into account
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Models with/without SA
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Model I: MDP Model Il: Time-Varying MDP

Figure: Causal diagrams for MDPs and TMDPs. Solid lines represent the causal relationships. Dashed
lines indicate the information needed to implement the optimal policy. The parallel sign || indicates that
the conditional probability function given parent nodes is equal. 11/31



Challenges

® When the optimal policy is nonstationary, using all data is not reasonable

e Natural to use more recent observations for policy optimisation

® Challenging to select the best data “segment”

® |ncluding too many past observations yields a suboptimal policy
® Using only a few recent observations results in a very noisy policy
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Contributions

* Methodologically
® First work on developing consistent test for stationarity in offline RL

® The test procedure is “model-free”’ (target on the optimal Q-function Q")
® Null hypothesis Ho: Q° is stationary over time
® Alternative hypothesis H1: Q%" varies over time

® Sequentially apply the test for selecting the best data “segment”
e Empirically

® |dentify a better policy compared to existing RL algorithms in IHS
® Theoretically

® prove our test has good size and power properties under a bidirectional asymptotic
framework
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Method: Test Statistics

Some key components of the test statistic:
® Model the optimal Q-function via the sieve method

® Ensure the estimator has a tractable limiting distribution
® |ncrease the number of sieves to reduce the bias resulting from model misspecification

e Construct CUSUM-type test statistics for change detection (detailed later)
® \Widely used in the time series literature
® QObtain critical values using multiplier bootstrap

® Q-estimator is asymptotically normal

® Test statistic is a complicated function of several Q-estimators

® Bootstrapped statistic is a function of simulated random normal errors
® Approximate critical values via the quantile of the bootstrapped statistic
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Method: Test Statistics (Cont’d)

e A CUSUM-type test statistic
® Select a set of candidate change point locations u € [Ty, T]

® For each u, estimate two Q-functions Q[To7u] and Q[u71-]
® (Construct the test based on their maximal difference

Q 7] Q 11

222220  vimmis .

t=T0 ul t=T
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Method: Test Statistics (Cont’d)

e A CUSUM-type test statistic
® Select a set of candidate change point locations u € [Ty, T]

® For each u, estimate two Q-functions Q[To7u] and Q[u71-]
® (Construct the test based on their maximal difference

Q Ty Q 1

Liiiiiiiiizziizihbbssummmm mn gmpnummmmn .

t=T0 u2 t=T
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Method: Test Statistics (Cont’d)

e A CUSUM-type test statistic
® Select a set of candidate change point locations u € [Ty, T]

® For each u, estimate two Q-functions Q[To7u] and Q[u71-]
® (Construct the test based on their maximal difference

Q 17,3 Q .11

Liiiiiiiiiizrzzzzzz;z7z:adsummsmmmgmnn
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Method: Test Statistics (Cont’d)

e Standard CUSUM-statistics that focuses on the difference in the mean
e We focus on the difference in @ which is a function of the state-action pair
® Need to aggregate the maximal difference
T —u)(u— T() -~ ~
Aas) = muax\/ LT 0, y(a.s) - Qun(as) ()

over different state-action pair

Three proposed test statistics

1. ¢;-type: aggregate A(a,s) over the empirical data distribution
2. maximum-type: max, s A(a, s)
3. normalized maximum (widely used in econ): max, s !(a,s)A(a,s)

e Bootstrapped statistic: replace @ in (1) with simulated normal errors
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Method: Test Statistics (Cont’d)

The test is able to detect both abrupt and smooth changepoints
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Method: Sequential Procedure

® Sequentially apply the test for selecting the best data “segment”
® Sequentially test whether #g holds on the data interval [T — &, T] for
IQ]<IQ2<FL3<"'
® Suppose Hy is first rejected at some kK = Kj,
® Use the data subset within the interval [T — kj,_1, T] for policy optimisation

Hypothesis Testing
T
>
t=T1T- K3 t=T- Ky t=T- Ky t=
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Method: Sequential Procedure (Cont’d)

® Sequentially apply the test for selecting the best data “segment”

® Sequentially test whether #g holds on the data interval [T — &, T] for
F-'/1<K/2<K'/3<"'

® Suppose Hy is first rejected at some kK = Kj,

® Use the data subset within the interval [T — kj,_1, T] for policy optimisation

Not rejected. Combine more data

J—l—u >

t=T1T- K3 t=T- Ky t=T- Ky t=T
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Method: Sequential Procedure (Cont’d)

® Sequentially apply the test for selecting the best data “segment”

® Sequentially test whether #g holds on the data interval [T — &, T] for
F-'/1<K/2<K'/3<“'

® Suppose Hy is first rejected at some kK = Kj,

® Use the data subset within the interval [T — kj,_1, T] for policy optimisation

Not rejected. Combine more data

Wi

t=0 t=T-x5 t=T-xK t=T-x t=T
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Method: Sequential Procedure (Cont’d)

® Sequentially apply the test for selecting the best data “segment”

® Sequentially test whether #g holds on the data interval [T — &, T] for
IQ]<IQ2<FL3<"'

® Suppose Hy is first rejected at some kK = Kj,

® Use the data subset within the interval [T — kj,_1, T] for policy optimisation

Rejected. Use the last data interval

J—l—u >

t=T1T- K3 t=T- Ky t=T- Ky t=T
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Method: Sequential Procedure (Cont’d)

® Qur proposal: an improved version of the sequential procedure based on isotonic
regression

® Main idea: When the data interval consists of a single change point, those
significant p-values are monotonic over time

® Method:
1. Sequentially test whether Hg holds on the data interval [T — &, T] for
K1 < K2 < K3 < - -+ and compute the p-value

2. Apply isotonic regression to fit these p-values
3. Suppose Hy is first rejected at some Kk = kj;, based on the fitted p-value
4. Use the data subset within the interval [T — kj,_1, T] for policy optimisation

® The single-change-point assumption can be relaxed (see the data example)
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Method: Sequential Procedure (Cont’d)

The advantage of using isotonic regression

P Value
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—— Pvalue
Isotonic regression
prediction

Change point detected
by sequential method

True Change Point
& Change point detected
by isotonic regression method
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Application: Intern Health Study

1:31PM 94 wioe 138 PM

® Subject: First-year medical interns

Dashboard

On a scale of 1-10 how

® Objective: Develop treatment policy s
was your mood today'«

to determine whether to send certain
text messages to interns to improve
their health

e S;: Interns’ mood scores, sleep
hours and step counts

e A;: Send text notifications or not

Cance At

(ii) Mood EMA

® R;: Step counts

il Notifications
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Application: Intern Health Study (Cont’d)

Emergency ‘ Pediatrics ‘ Family Practice
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Application: Intern Health Study (Cont’d)

# Change points

Specialty

Method

Value

v=0.9

v =095

Emergency

Proposed
Overall
Behavior

8073.27
7902.39
7823.75

8003.38
7794.77
77717.32

Pediatrics

Proposed
Overall
Behavior

7783.86
7680.04
7730.98

7762.81
7686.46
7721.29

Family Practice

Proposed
Overall
Behavior

8087.15
8087.15
7967.67

8072.78
8072.78
7957.24

® Mean value is the weekly average step counts per day

® The proposed method improves mean value by 50 — 250 steps, compared to the

behavior policy
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Bidirectional Theory

N the number of trajectories
T the number of decision points per trajectory
bidirectional asymptotics: a framework allows either N or T — oo
large N, small T (Intern Health Study)
T

small N, large T (OhioT1DM dataset)

N

large N, large T (games)
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Bidirectional Theory (Cont’d)

Theorem (Informal Statement)

Under certain conditions, as either N or T diverges to infinity

1.
2.

Our test controls the type-I error under Hyg

Its power approaches 1 under Hq

The number of sieves shall grow to infinity — reduce the model misspecification
error (classical weak convergence theorem is not directly applicable)

Develop a matrix concentration inequality under nonstationarity (sharper than
naively applying concentration inequalities for scalar random variables)

Undersmoothing is not needed to guarantee the test has good size property
Cross-validation can be employed to select the number of sieves

f1 and normalized maximum type tests require weaker conditions than the

maximum-type test
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Thank You!

@Papers and softwares can be found on my personal website

callmespring.githuo.io
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