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Developing AI with Reinforcement Learning
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In this talk, we will focus on ...

• Reinforcement learning in offline real-world applications (e.g., mobile health,
ridesharing).
• Most works consider developing RL algorithms in games (online)

(a) Mobile Health (b) Ridesharing (c) Games

• Statistical inference in reinforcement learning
• Is statistical inference useful in reinforcement leaning?
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Intern Health Study (IHS)

• Data: Intern Health Study (NeCamp
et al., 2020)

• Subject: First-year medical interns
working in stressful environments (e.g.,
long work hours and sleep deprivation)

• Objective: Promote physical
well-being

• Intervention: Determine whether to
send certain text message to a subject
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Intern Health Study (Cont’d)
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Sequential Decision Making
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The Agent’s Policy

• The agent implements a mapping πt from the observed data to a probability
distribution over actions at each time step

• The collection of these mappings π = {πt}t is called the agent’s policy:

πt(a|s̄) = Pr(At = a|S̄t = s̄),

where S̄t = (St ,Rt−1,At−1,St−1, · · ·,R0,A0,S0) is the set of observed data
history up to time t.

• History-Dependent Policy: πt depends on S̄t .

• Markov Policy: πt depends on S̄t only through St .

• Stationary Policy: π is Markov & πt is homogeneous in t, i.e., π0 = π1 = · · ·.
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The Agent’s Policy (Cont’d)
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Reinforcement Learning

• RL algorithms: trust region policy optimization (Schulman et al., 2015), deep
Q-network (DQN, Mnih et al., 2015), asynchronous advantage actor-critic (Minh et
al., 2016), quantile regression DQN (Dabney et al., 2018).
• Foundations of RL:

• Markov decision process (MDP, Puterman, 1994): ensures the optimal policy is
stationary , and is not history-dependent.

• Markov assumption: conditional on the present (e.g., St , At), the future (Rt , St+1)
and the past data history are independent

• Stationarity assumption: the Markov transition kernel, e.g., the conditional
distribution of (Rt , St+1) given (St = s, At = a) is stationary over time
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Stationarity Assumption

• Stationarity assumption is likely to hold in many OpenAI Gym environments

• However, it can be violated in the real world environment
• Treatment effects can be nonstationary

• COVID vaccine effectiveness decays over time
• The treatment effect of activity suggestions may transition from positive to negative

• Environments can be nonstationary
• COVID mutations, invention of vaccines
• In the context of mobile-delivered prompts, the longer a person is under intervention,

the more they may habituate to the prompts or become overburdened

• Without stationarity, the optimal policy is nonstationary as well

• Crucial for policy maker to take nonstationarity into account
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Models with/without SA

Figure: Causal diagrams for MDPs and TMDPs. Solid lines represent the causal relationships. Dashed
lines indicate the information needed to implement the optimal policy. The parallel sign ‖ indicates that
the conditional probability function given parent nodes is equal. 11 / 31



Challenges

• When the optimal policy is nonstationary, using all data is not reasonable

• Natural to use more recent observations for policy optimisation

• Challenging to select the best data “segment”
• Including too many past observations yields a suboptimal policy
• Using only a few recent observations results in a very noisy policy
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Contributions

• Methodologically
• First work on developing consistent test for stationarity in offline RL

• The test procedure is “model-free” (target on the optimal Q-function Qopt)
• Null hypothesis H0: Q

opt is stationary over time
• Alternative hypothesis H1: Q

opt varies over time

• Sequentially apply the test for selecting the best data “segment”

• Empirically
• Identify a better policy compared to existing RL algorithms in IHS

• Theoretically
• prove our test has good size and power properties under a bidirectional asymptotic

framework
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Method: Test Statistics

Some key components of the test statistic:
• Model the optimal Q-function via the sieve method

• Ensure the estimator has a tractable limiting distribution
• Increase the number of sieves to reduce the bias resulting from model misspecification

• Construct CUSUM-type test statistics for change detection (detailed later)
• Widely used in the time series literature

• Obtain critical values using multiplier bootstrap
• Q-estimator is asymptotically normal
• Test statistic is a complicated function of several Q-estimators
• Bootstrapped statistic is a function of simulated random normal errors
• Approximate critical values via the quantile of the bootstrapped statistic
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Method: Test Statistics (Cont’d)

• A CUSUM-type test statistic
• Select a set of candidate change point locations u ∈ [T0,T ]
• For each u, estimate two Q-functions Q̂[T0,u] and Q̂[u,T ]
• Construct the test based on their maximal difference
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Method: Test Statistics (Cont’d)

• Standard CUSUM-statistics that focuses on the difference in the mean

• We focus on the difference in Q which is a function of the state-action pair

• Need to aggregate the maximal difference

∆(a, s) = max
u

√
(T − u)(u − T0)

(T − T0)
|Q̂[T0,u](a, s)− Q̂[u,T ](a, s)| (1)

over different state-action pair
• Three proposed test statistics

1. `1-type: aggregate ∆(a, s) over the empirical data distribution
2. maximum-type: maxa,s ∆(a, s)
3. normalized maximum (widely used in econ): maxa,s σ̂

−1(a, s)∆(a, s)

• Bootstrapped statistic: replace Q̂ in (1) with simulated normal errors
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Method: Test Statistics (Cont’d)

The test is able to detect both abrupt and smooth changepoints
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Method: Sequential Procedure

• Sequentially apply the test for selecting the best data “segment”
• Sequentially test whether H0 holds on the data interval [T − κ,T ] for
κ1 < κ2 < κ3 < · · ·

• Suppose H0 is first rejected at some κ = κj0
• Use the data subset within the interval [T − κj0−1,T ] for policy optimisation
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Method: Sequential Procedure (Cont’d)

• Our proposal: an improved version of the sequential procedure based on isotonic
regression

• Main idea: When the data interval consists of a single change point, those
significant p-values are monotonic over time
• Method:

1. Sequentially test whether H0 holds on the data interval [T − κ,T ] for
κ1 < κ2 < κ3 < · · · and compute the p-value

2. Apply isotonic regression to fit these p-values
3. Suppose H0 is first rejected at some κ = κj0 , based on the fitted p-value
4. Use the data subset within the interval [T − κj0−1,T ] for policy optimisation

• The single-change-point assumption can be relaxed (see the data example)
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Method: Sequential Procedure (Cont’d)
The advantage of using isotonic regression
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Application: Intern Health Study

• Subject: First-year medical interns

• Objective: Develop treatment policy
to determine whether to send certain
text messages to interns to improve
their health

• St : Interns’ mood scores, sleep
hours and step counts

• At : Send text notifications or not

• Rt : Step counts
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Application: Intern Health Study (Cont’d)

Emergency Pediatrics Family Practice
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Application: Intern Health Study (Cont’d)

• Mean value is the weekly average step counts per day
• The proposed method improves mean value by 50 – 250 steps, compared to the

behavior policy
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Bidirectional Theory
• N the number of trajectories
• T the number of decision points per trajectory
• bidirectional asymptotics: a framework allows either N or T →∞
• large N , small T (Intern Health Study)

• small N , large T (OhioT1DM dataset)

• large N , large T (games)
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Bidirectional Theory (Cont’d)

Theorem (Informal Statement)

Under certain conditions, as either N or T diverges to infinity

1. Our test controls the type-I error under H0

2. Its power approaches 1 under H1

• The number of sieves shall grow to infinity→ reduce the model misspecification
error (classical weak convergence theorem is not directly applicable)

• Develop a matrix concentration inequality under nonstationarity (sharper than
naively applying concentration inequalities for scalar random variables)

• Undersmoothing is not needed to guarantee the test has good size property

• Cross-validation can be employed to select the number of sieves

• `1 and normalized maximum type tests require weaker conditions than the
maximum-type test
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Thank You!

,Papers and softwares can be found on my personal website

callmespring.githuo.io
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