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A/B Testing

Taken from
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Ridesharing
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Ridesharing (Cont’d)
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Policies of Interest
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Policies of Interest

5 / 45



Time Series Data

• Online experiment typically lasts for two weeks

• 30 minutes/1 hour as one time unit

• Data forms a time series {(Yt ,Ut) : 1 ≤ t ≤ T}
• Observations Yt ∈ R3:

1. Outcome: drivers’ income or no. of completed orders
2. Supply: no. of idle drivers
3. Demand: no. of call orders

• Treatment Ut ∈ {1,−1}:
• New order dispatching policy B
• Old order dispatching policy A

6 / 45



Challenges

1. Carryover Effects:
• Past treatments influence future observations [Li et al., 2024a, Figure 2] −→
• Invalidating many conventional A/B testing/causal inference methods [Shi et al., 2023].

2. Partial Observability:
• The environmental state is not fully observable −→
• Leading to the violation of the Markov assumption.

3. Small Sample Size:
• Online experiments typically last only two weeks [Xu et al., 2018] −→
• Increasing the variability of the average treatment effect (ATE) estimator.

4. Small Signal:
• Size of treatment effects ranges from 0.5% to 2% [Tang et al., 2019] −→
• Making it challenging to distinguish between new and old policies.

To our knowledge, no existing method has simultaneously addressed all four challenges.
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Challenge I: Carryover Effects
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Adopting the Closest Driver Policy
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Some Time Later · · ·
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Miss One Order
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Consider a Different Action
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Able to Match All Orders
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Challenge I: Carryover Effects (Cont’d)

past treatments → distribution of drivers → future outcomes
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Challenge II: Partial Observability
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Challenge II: Partial Observability (Cont’d)
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Challenge III & IV: Small sample & Small Signal

• Aim 1: Design. Identify optimal treatment allocation strategy in online
experiment that minimizes MSE of ATE estimator

• Aim 2: Data Integration. Combine experimental data (A/B) with historical
data (A/A) to improve ATE estimation [Li et al., 2024b]
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Optimal Treatment Allocation Strategies for A/B Testing in

Partially Observable Environments

Joint work with Ke Sun, Linglong Kong & Hongtu Zhu
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Average Treatment Effect

• Data summarized into a time series {(Yt ,Ut) : 1 ≤ t ≤ T}
• The first element of Yt – denoted by Rt – represents the outcome

• ATE = difference in average outcome between the new and old policy

lim
T→∞

[
1

T

T∑
t=1

ERt

]
− lim

T→∞

[
1

T

T∑
t=1

ERt

]
.

Letting T → ∞ simplifies the analysis.
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Alternating-day (AD) Design
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Alternating-time (AT) Design
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AD v.s. AT

Pros of AD design:

• Within each day, it is on-policy and
avoids distributional shift, as opposed
to off-policy designs (e.g., AT)

• On-policy designs are proven optimal in
fully observable Markovian
environments [Li et al., 2023].

Pros of AT design:

• Widely employed in ridesharing
companies like Lyft and Didi
[Chamandy, 2016, Luo et al., 2024]

• According to my industrial
collaborator, AT yields less variable
ATE estimators than AD
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AD v.s. AT (Cont’d)

• Q: Why can off-policy designs, such as AT, be more efficient than AD?

• A: Due to partial observability...
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A Thought Experiment [From Wen et al., 2024]

• A simple setting without carryover effects:

Rt = β−1I(Ut = −1) + β1I(Ut = 1) + et

• ATE equals β1 − β−1 and can be estimated by

ÂTE =

T∑
t=1

RtI(Ut = 1)

T∑
t=1

I(Ut = 1)

−

T∑
t=1

RtI(Ut = −1)

T∑
t=1

I(Ut = −1)
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A Thought Experiment (Cont’d)

The ATE estimator’s asymptotic MSE under AD and AT is proportional to

lim
t→∞

1

t
Var(e1+e2+e3+e4+· · ·+et) and lim

t→∞

1

t
Var(e1–e2+e3–e4+· · ·–et)

which depends on the residual correlation:

• With uncorrelated residuals, both designs yield same MSEs
• With positively correlated residuals:

• AD assigns the same treatment within each day, under which ATE estimator’s
variance inflates due to accumulation of these residuals

• AT alternates treatments for adjacent observations, effectively negating these
residuals, leading to more efficient ATE estimation

• With negatively correlated residuals, AD generally outperforms AT
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When Can AT Be More Efficient than AD
Key Condition: Residuals are positively correlated
• Rule out full observablity (Markovianity) where residuals are uncorrelated.
• Can only be met under partial observability.
• Suggest partial observability is more realistic, aligning with my collaborator’s finding.
• Often satisfied in practice:

Figure: Estimated correlation coefficients between pairs of fitted outcome residuals from the two cities

26 / 45



Some Motivating Questions

• Q1: Previous analysis excludes carryover effects. Can we extend the results
to accommodate carryover effects?

• Q2: Previous analysis focuses on AD and AT. Can we consider more general
designs?
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Our Contributions

• Methodologically, we propose:

1. A controlled (V)ARMA model → allow carryover effects & partial observability
2. Two efficiency indicators → compare commonly used designs (AD, AT)
3. A reinforcement learning (RL) algorithm → compute the optimal design

• Theoretically, we:
1. Establish asymptotic MSEs of ATE estimators → compare different designs
2. Introduce small signal condition → simplify asymptotic analysis in sequential settings
3. Prove the optimal treatment allocation strategy is q-dependent → form the basis of

our proposed RL algorithm

• Empirically, we demonstrate the advantages of our proposal using:

1. A dispatch simulator (https://github.com/callmespring/MDPOD)
2. Two real datasets from ridesharing companies.
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Controlled VARMA Model: Introduction
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Controlled VARMA Model: Introduction
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Controlled VARMA Model: Connections

• Closely related to state space models or linear partially observable MDPs
(POMDP)

- Using VARMA as opposed to linear POMDPs allows to leverage asymptotic theories
developed in time series to derive optimal designs

• Compared to MDPs
- Both controlled VARMA and MDP accommodate carryover effects

• See Shi et al. [2023] for how MDPs handle these effects

- MDPs require full observability whereas controlled VARMA allows partial observability
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Controlled VARMA Model: Estimation

Consider a univariate controlled ARMA

Yt = µ+

p∑
j=1

ajYt−j︸ ︷︷ ︸
AR Part

+ bUt︸︷︷︸
Control

+εt +

q∑
j=1

θjεt−j︸ ︷︷ ︸
MA Part

• AR parameters {aj}j & control parameter b → ATE, equal to 2b/(1−
∑

j aj )
• Partial observability → standard OLS fails to consistently estimate b & {aj}j
• Employ Yule-Walker estimation (method of moments) instead
• Similar to IV estimation, utilize past observations as IVs

• MA parameters {θj}j → residual correlation → optimal design
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Theory: Small Signal Condition
• Asymptotic framework: large sample T → ∞ & small signal ATE→ 0
• Empirical alignment: size of ATE ranges from 0.5% to 2%
• Theoretical simplification: considerably simplifies the computation of ATE
estimator’s MSE in sequential settings. According to Taylor’s expansion:
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Theory: Asymptotic MSE
We focus on the class of observation-agnostic designs:

• U1 is randomly assigned
• The distribution of Ut depends on (U1, · · · , Ut−1), independent of (Y1, · · · , Yt−1)

It covers three commonly used designs:

1. Uniform random (UR) design: {Ut}t are uniformly independently generated
2. AD: U1 = U2 = · · · = UD = −UD+1 = · · · = −U2D = U2D+1 = · · ·
3. AT: U1 = −U2 = U3 = −U4 = · · · = (−1)T−1UT

Theorem (Asymptotic MSE)

Given an observation-agnostic design, let ξ = limT
∑T

t=1(EUt/T ). Under the small
signal condition, its ATE estimator’s asymptotic MSE (after normalization) equals

lim
T

4

(1−
∑∑∑

j aj )2(1− ξ)2T
Var

[ T∑
t=1

(Ut − ξ)et

]
.
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Theory: Asymptotic MSE (Cont’d)

Corollary (Asymptotic MSE)

Under the small signal condition, the ATE estimator’s asymptotic MSE (after
normalization) under AD, UR and AT equals

MSE(AD) =
4σ2

(1−
∑∑∑

j aj )2

[ q∑
j=0

θ2
j +

∑
j1 ̸=j2

θj1θj2

]

MSE(UR) =
4σ2

(1−
∑∑∑

j aj )2

q∑
j=0

θ2
j

MSE(AT) =
4σ2

(1−
∑∑∑

j aj )2

[ q∑
j=0

θ2
j + 2

∑
j1 ̸=j2

(−1)|j2−j1|θj1θj2

]
,

where σ2 denotes the variance of the white noise process.
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Design: Efficiency Indicator

Define two efficiency indicators

EI1 =
∑
j1 ̸=j2

θj1θj2 and EI2 =
∑
j1 ̸=j2

(−1)|j2−j1|θj1θj2 .

They measure residual correlations and can be used to compare the three designs:

• If both EI1 and EI2 > 0, UR outperforms AD & AT

• If EI2 < 0 and EI1 > EI2, AT outperforms the rest

• If EI1 < 0 and EI2 > EI1, AD outperforms the rest

MA parameters can be estimated using historical data (even without treatment data).
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Design: Optimality

Theorem (Optimal Design)

The optimal design must satisfy limT
∑T

t=1(EUt/T ) = 0. Additionally, it must minimize

q∑
k=1

[
lim
T

( 1

T

T∑
t=1

EUtUt+k

) q∑
j=k

θjθj−k︸ ︷︷ ︸
ck

]

Objective: learn the optimal observation-agnostic design that:

(i) Minimizes the above criterion

(ii) Maintains a zero mean asymptotically, i.e., limT
∑T

t=1(EUt/T ) = 0
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Design: An RL Approach

Solution: reformulate the minimization as an infinite-horizon average-reward RL problem

• State St : the collection of past q treatments (Ut−q ,Ut−q+1, · · · ,Ut−1)

• Action At : the current treatment Ut ∈ {−1, 1}
• Reward Rt : a deterministic function of state-action pair, −

∑q
k=1 ck(UtUt−k)

Easy to verify:

1. The minimization objective equals the negative average reward → equivalent to
maximizing the average reward

2. The process is an MDP → there exists an optimal stationary policy maximizes the
average reward → optimal design is q-dependent, i.e., Ut is a deterministic function
of (Ut−q ,Ut−q+1, · · · ,Ut−1) & this function is stationary in t

3. Uniformly randomly assign the first q treatments → the resulting design maintains
a zero mean and is indeed optimal
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Design: An RL Approach (Cont’d)
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Empirical Study: Synthetic Environments
• A 9× 9 dispatch simulator
• Available at https://github.com/callmespring/MDPOD
• Two efficiency indicators

• ATE estimator’s MSE under various designs

Design AT UR Greedy TMDP NMDP AD Ours

MSE 8.33 2.23 1.10 0.56 0.42 0.28 0.28
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Empirical Study: Real Datasets
• Data:
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• We incorporate a seasonal term in our controlled VARMA model to account for
seasonality. Below are MSEs of ATE estimators under different designs

City EI1 EI2 AD UR AT Ours
City 1 20.98 -21.11 11.98 11.63 9.72 8.24
City 2 -4.89 0.22 9.64 30.04 546.79 8.38 41 / 45



Thank You!

,My RL short course
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