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A/B Testing

Taken from
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Ridesharing
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Ridesharing (Cont’d)
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Policies of Interest
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Policies of Interest
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Time Series Data

• Online experiment typically lasts for two weeks

• 30 minutes/1 hour as one time unit

• Data forms a time series {(Yt ,Ut) : 1 ≤ t ≤ T}
• Observations Yt ∈ R3:

1. Outcome: drivers’ income or no. of completed orders
2. Supply: no. of idle drivers
3. Demand: no. of call orders

• Treatment Ut ∈ {1,−1}:
• New order dispatching policy B
• Old order dispatching policy A
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Challenges

1. Carryover Effects:
• Past treatments influence future observations [Li et al., 2024a, Figure 2] −→
• Invalidating many conventional A/B testing/causal inference methods [Shi et al., 2023].

2. Partial Observability:
• The environmental state is not fully observable −→
• Leading to the violation of the Markov assumption.

3. Small Sample Size:
• Online experiments typically last only two weeks [Xu et al., 2018] −→
• Increasing the variability of the average treatment effect (ATE) estimator.

4. Weak Signal:
• Size of treatment effects ranges from 0.5% to 2% [Tang et al., 2019] −→
• Making it challenging to distinguish between new and old policies.

To our knowledge, no existing method has simultaneously addressed all four challenges.
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Challenge I: Carryover Effects

8 / 71



Adopting the Closest Driver Policy
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Some Time Later · · ·
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Miss One Order
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Consider a Different Action
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Able to Match All Orders
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Challenge I: Carryover Effects (Cont’d)

past treatments → distribution of drivers → future outcomes
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Challenge II: Partial Observability
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Challenge II: Partial Observability (Cont’d)
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Challenge III & IV: Small sample & Weak Signal

• Aim 1: Design. Identify optimal treatment allocation strategy in online
experiment that minimizes MSE of ATE estimator

• Aim 2: Data Integration. Combine experimental data (A/B) with historical
data (A/A) to improve ATE estimation [Li et al., 2024b]

17 / 71



Project I

Optimal Treatment Allocation Strategies for A/B Testing in

Partially Observable Time Series Environments

Joint work with Ke Sun, Linglong Kong & Hongtu Zhu
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Average Treatment Effect

• Data summarized into a time series {(Yt ,Ut) : 1 ≤ t ≤ T}
• The first element of Yt – denoted by Rt – represents the outcome

• ATE = difference in average outcome between the new and old policy

lim
T→∞

[
1

T

T∑
t=1

ERt

]
− lim

T→∞

[
1

T

T∑
t=1

ERt

]
.

Letting T → ∞ simplifies the analysis.
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Alternating-day (AD) Design
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Alternating-time (AT) Design
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AD v.s. AT

Pros of AD design:

• Within each day, it is on-policy and
avoids distributional shift, as opposed
to off-policy designs (e.g., AT)

• On-policy designs are proven optimal in
fully observable Markovian
environments [Li et al., 2023a].

Pros of AT design:

• Widely employed in ridesharing
companies like Lyft and Didi
[Chamandy, 2016, Luo et al., 2024]

• According to my industrial
collaborator, AT yields less variable
ATE estimators than AD
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AD v.s. AT (Cont’d)

• Q: Why can off-policy designs, such as AT, be more efficient than AD?

• A: Due to partial observability...
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A Thought Experiment

• A simple setting without carryover effects:

Rt = β−1I(Ut = −1) + β1I(Ut = 1) + et

• ATE equals β1 − β−1 and can be estimated by

ÂTE =

T∑
t=1

RtI(Ut = 1)

T∑
t=1

I(Ut = 1)

−

T∑
t=1

RtI(Ut = −1)

T∑
t=1

I(Ut = −1)
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A Thought Experiment (Cont’d)

The ATE estimator’s asymptotic MSE under AD and AT is proportional to

lim
t→∞

1

t
Var(e1+e2+e3+e4+· · ·+et) and lim

t→∞

1

t
Var(e1–e2+e3–e4+· · ·–et)

which depends on the residual correlation:

• With uncorrelated residuals, both designs yield same MSEs
• With positively correlated residuals:

• AD assigns the same treatment within each day, under which ATE estimator’s
variance inflates due to accumulation of these residuals

• AT alternates treatments for adjacent observations, effectively negating these
residuals, leading to more efficient ATE estimation

• With negatively correlated residuals, AD generally outperforms AT
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When Can AT Be More Efficient than AD
Key Condition: Residuals are positively correlated
• Rule out full observablity (Markovianity) where residuals are uncorrelated.
• Can only be met under partial observability.
• Suggest partial observability is more realistic, aligning with my collaborator’s finding.
• Often satisfied in practice:

Figure: Estimated correlation coefficients between pairs of fitted outcome residuals from the two cities
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Some Motivating Questions

• Q1: Previous analysis excludes carryover effects. Can we extend the results
to accommodate carryover effects?

• Q2: Previous analysis focuses on AD and AT. Can we consider more general
designs?
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Our Contributions

• Methodologically, we propose:

1. A controlled (V)ARMA model → allow carryover effects & partial observability
2. Two efficiency indicators → compare commonly used designs (AD, AT)
3. A reinforcement learning (RL) algorithm → compute the optimal design

• Theoretically, we:
1. Establish asymptotic MSEs of ATE estimators → compare different designs
2. Introduce weak signal condition → simplify asymptotic analysis in sequential settings
3. Prove the optimal treatment allocation strategy is q-dependent → form the basis of

our proposed RL algorithm

• Empirically, we demonstrate the advantages of our proposal using:

1. A dispatch simulator (https://github.com/callmespring/MDPOD)
2. Two real datasets from ridesharing companies.

28 / 71

https://github.com/callmespring/MDPOD


Controlled VARMA Model: Introduction
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Controlled VARMA Model: Introduction
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Controlled VARMA Model: Connection

• Closely related to state space models or linear quadratic regulator (LQR)
- The latter being a rich sub-class of partially observable MDPs
- Using VARMA as opposed to LQR allows to leverage asymptotic theories developed in
time series to derive optimal designs

• Compared to MDPs
- Both controlled VARMA and MDP accommodate carryover effects
- MDPs require full observability whereas controlled VARMA allows partial observability
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Controlled VARMA Model: Estimation

Consider a univariate controlled ARMA

Yt = µ+

p∑
j=1

ajYt−j︸ ︷︷ ︸
AR Part

+ bUt︸︷︷︸
Control

+εt +

q∑
j=1

θjεt−j︸ ︷︷ ︸
MA Part

• AR parameters {aj}j & control parameter b → ATE, equal to 2b/
∑

j (1− aj )
• Partial observability → standard OLS fails to consistently estimate b & {aj}j
• Employ Yule-Walker estimation (method of moments) instead
• Similar to IV estimation, utilize past observations as IVs

• MA parameters {θj}j → residual correlation → optimal design
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Theory: Weak Signal Condition
• Asymptotic framework: large sample T → ∞ & weak signal ATE→ 0
• Empirical alignment: size of ATE ranges from 0.5% to 2%
• Theoretical simplification: considerably simplifies the computation of ATE
estimator’s MSE in sequential settings. According to Taylor’s expansion:
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Theory: Asymptotic MSE
We focus on the class of observation-agnostic designs:

• U1 is randomly assigned
• The distribution of Ut depends on (U1, · · · , Ut−1), independent of (Y1, · · · , Yt−1)

It covers three commonly used designs:

1. Uniform random (UR) design: {Ut}t are uniformly independently generated
2. AD: U1 = U2 = · · · = UD = −UD+1 = · · · = −U2D = U2D+1 = · · ·
3. AT: U1 = −U2 = U3 = −U4 = · · · = (−1)T−1UT

Theorem (Asymptotic MSE)

Given an observation-agnostic design, let ξ = limT
∑T

t=1(EUt/T ). Under the weak
signal condition, its ATE estimator’s asymptotic MSE (after normalization) equals

lim
T

4

(1−
∑∑∑

j aj )2(1− ξ)2T
Var

[ T∑
t=1

(Ut − ξ)et

]
.
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Theory: Asymptotic MSE (Cont’d)

Corollary (Asymptotic MSE)

Under the weak signal condition, the ATE estimator’s asymptotic MSE (after
normalization) under AD, UR and AT equals

MSE(AD) =
4σ2

(1−
∑∑∑

j aj )2

[ q∑
j=0

θ2
j +

∑
j1 ̸=j2

θj1θj2

]

MSE(UR) =
4σ2

(1−
∑∑∑

j aj )2

q∑
j=0

θ2
j

MSE(AT) =
4σ2

(1−
∑∑∑

j aj )2

[ q∑
j=0

θ2
j + 2

∑
j1 ̸=j2

(−1)|j2−j1|θj1θj2

]
,

where σ2 denotes the variance of the white noise process.
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Design: Efficiency Indicator

Define two efficiency indicators

EI1 =
∑
j1 ̸=j2

θj1θj2 and EI2 =
∑
j1 ̸=j2

(−1)|j2−j1|θj1θj2 .

They measure residual correlations and can be used to compare the three designs:

• If both EI1 and EI2 > 0, UR outperforms AD & AT

• If EI2 < 0 and EI1 > EI2, AT outperforms the rest

• If EI1 < 0 and EI2 > EI1, AD outperforms the rest

MA parameters can be estimated using historical data (even without treatment data).
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Design: Optimality

Theorem (Optimal Design)

The optimal design must satisfy limT
∑T

t=1(EUt/T ) = 0. Additionally, it must minimize

q∑
k=1

[
lim
T

( 1

T

T∑
t=1

EUtUt+k

) q∑
j=k

θjθj−k︸ ︷︷ ︸
ck

]

Objective: learn the optimal observation-agnostic design that:

(i) Minimizes the above criterion

(ii) Maintains a zero mean asymptotically, i.e., limT
∑T

t=1(EUt/T ) = 0
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Design: An RL Approach

Solution: reformulate the minimization as an infinite-horizon average-reward RL problem

• State St : the collection of past q treatments (Ut−q ,Ut−q+1, · · · ,Ut−1)

• Action At : the current treatment Ut ∈ {−1, 1}
• Reward Rt : a deterministic function of state-action pair, −

∑q
k=1 ck(UtUt−k)

Easy to verify:

1. The minimization objective equals the negative average reward → equivalent to
maximizing the average reward

2. The process is an MDP → there exists an optimal stationary policy maximizes the
average reward → optimal design is q-dependent, i.e., Ut is a deterministic function
of (Ut−q ,Ut−q+1, · · · ,Ut−1) & this function is stationary in t

3. Uniformly randomly assign the first q treatments → the resulting design maintains
a zero mean and is indeed optimal
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Design: An RL Approach (Cont’d)
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Empirical Study: Synthetic Environments
• A 9× 9 dispatch simulator
• Available at https://github.com/callmespring/MDPOD
• Two efficiency indicators

• ATE estimator’s MSE under various designs

Design AT UR Greedy TMDP NMDP AD Ours

MSE 8.33 2.23 1.10 0.56 0.42 0.28 0.28
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Empirical Study: Real Datasets
• Data:
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• We incorporate a seasonal term in our controlled VARMA model to account for
seasonality. Below are MSEs of ATE estimators under different designs

City EI1 EI2 AD UR AT Ours
City 1 20.98 -21.11 11.98 11.63 9.72 8.24
City 2 -4.89 0.22 9.64 30.04 546.79 8.38 41 / 71



Project II

Combining Experimental and Historical Data for Policy

Evaluation
— ICML (2024)

Joint work with Ting Li, Qianglin Wen, Yang Sui, Yongli Qin, Chunbo Lai &
Hongtu Zhu
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Data Integration
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Example I: A/B Testing with Historical Data
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Example II: Meta Analysis [Shi et al., 2018]
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Example III: Combining Observational Data
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A/B Testing with Historical Data

Objective: combine experimental data (A/B) with historical data (A/A) to improve
ATE estimation

Challenge: distributional shift between experimental and historical data

• In ridesharing, the nonstationary of the environment → distributional shift [Wan
et al., 2021]

• In medicine: the heterogeneity in characteristics of treatment setting →
distributional shift [Shi et al., 2018]
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Two Base Estimators
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A Naive Weighted Estimator

• Consider the weighted estimator

τ̂w = w τ̂e + (1− w)τ̂h,

for some properly chosen weight w ∈ [0, 1] to minimize its MSE(τ̂w ).
• The weight w reflects a bias-variance tradeoff. A large w can:

• Reduce bias of τ̂w caused by the distributional shift between the datasets
• Increase variance of τ̂w as a result of not fully leveraging the historical data

• Natural to consider the following naive estimator that minimizes an estimated MSE:

M̂SE(τ̂w ) = B̂ias
2
(τ̂w ) + V̂ar(τ̂w ).

We refer to this estimator as the non-pessimistic estimator.
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Theoretical Analysis

Three scenarios, depending on the bias
b = E(b̂) = E(τ̂h − τ̂e)

1. Small bias: b is much smaller than the
standard deviation of its estimator;

2. Moderate bias: b is comparable to or
larger than the standard deviation, yet falls
within the high confidence bounds of b̂;

3. Large bias: b is much larger than the
estimation error.

Three competing estimators:

1. EDO (experimental-data-only)
estimator which sets w = 1;

2. SPE (semi-parametrically efficient)
estimator [Li et al., 2023b]
developed under the assumption of
no bias;

3. Oracle estimator which optimizes
w to minimize MSE(τ̂w );
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Theoretical Analysis (Cont’d)

Bias Non-pessimistic estimator Optimal estimator

Zero Close to efficiency bound SPE/Oracle
Small Close to oracle MSE SPE/Oracle
Moderate May suffer a large MSE Oracle
Large Oracle property EDO/Oracle

The oracle MSE denotes MSE of the oracle estimator and the efficiency bound is the smallest
achievable MSE among a broad class of regular estimators [Tsiatis, 2006].

51 / 71



Our Motivating Question

Can we develop an estimator that works well with moderate bias?
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Our Proposal

Main idea: reformulate the weight selection as an offline bandit problem

• Each weight w ∈ [0, 1] → an arm in bandit

• Negative MSE of τ̂w → reward of selecting an arm

Objective in bandit: choose the optimal arm that maximizes its reward.

53 / 71



Multi-Armed Bandit Problem

• The simplest RL problem

• A casino with multiple slot
machines

• Playing each machine yields an
independent reward.

• Limited knowledge (unknown
reward distribution for each
machine) and resources (time)

• Objective: determine which
machine to pick at each time to
maximize the expected cumulative
rewards
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Offline Multi-Armed Bandit Problem

• k-armed bandit problem (k machines)

• At ∈ {1, · · · , k}: arm (machine) pulled
(experimented) at time t

• Rt ∈ R: reward at time t
• Q(a) = E(Rt |At = a) expected reward

for each arm a (unknown)

• Objective: Given {At ,Rt}0≤t<T ,
identify the best arm
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Greedy Action Selection (Non-pessimistic
Estimator)

• Action-value methods:

Q̂(a) = N−1(a)
T−1∑
t=0

RtI(At = a)

where N(a) =
∑T−1

t=0 I(At = a)
denotes the action counter

• Greedy policy: argmaxa Q̂(a)
• Less-explored action → N(a) is small

→ inaccurate Q̂(a) → suboptimal
policy (see the plot on the right)
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The Pessimistic Principle

• In offline settings

• The less uncertain we are about
an action-value

• The more important it is to use
that action

• It could be the best action

• Likely to pick red action

• Yields the lower confidence
bound (LCB) algorithm
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Lower Confidence Bound

• Estimate an lower confidence L(a) for each action value such that

Q(a) ≥ Q̂(a)− L(a),

with high probability.
• L(a) quantifies the uncertainty and depends on N(a) (number of times arm a has
been selected in the historical data)

• Large N(a) → small L(a);
• Small N(a) → large L(a).

• Select actions maximizing lower confidence bound

a∗ = argmax
a

[Q̂(a)− L(a)].
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Lower Confidence Bound (Cont’d)

• Set L(a) =
√

c log(T )/N(a) for some positive constant c where T is the sample
size of historical data

• According to Hoeffding’s inequality (link), when rewards are bounded between 0
and 1, the event

|Q(a)− Q̂(a)| ≤ L(a),

holds with probability at least 1− 2T−2c (converges to 1 as T → ∞).
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Lower Confidence Bound (Cont’d)

• Q̂(4) > Q̂(3)

• T = 1605. Set c = 1.

• L(3)=
√
log(T )/N(3) = 0.272

• L(4)=
√

log(T )/N(4) = 1.215

• Q̂(3)−L(3)> Q̂(4)−L(4)
• Q̂(3)−L(3)> max(Q̂(1), Q̂(2))

• Correctly identify optimal action
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Theory

Define the regret, as the difference between the expected reward under the best arm and
that under the selected arm.

Theorem (Greedy Action Selection)

Regret of greedy action selection is upper bounded by 2maxa |Q̂(a)− Q(a)|, whose
value is bounded by 2

√
c log(T )/mina N(a) (according to Hoeffding’s inequality) with

probability approaching 1

• The upper bound depends on the estimation error of each Q-estimator

• The regret is small when each arm has sufficiently many observations

• However, it would yield a large regret when one arm is less-explored

• This reveals the limitation of greedy action selection
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Theory (Cont’d)

Theorem (LCB; see also Jin et al. [2021])

Regret of the LCB algorithm is upper bounded by 2
√

c log(T )/N(aopt) where aopt

denotes the best arm with probability approaching 1

• The upper bound depends on the estimation error of best arm’s Q-estimator only

• The regret is small when the best arm has sufficiently many observations

• This is much weaker than requiring each arm to have sufficiently many observations

• This reveals the advantage of LCB algorithm
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Back to Our Problem

Main idea: reformulate the weight selection as an offline bandit problem

• Each weight w ∈ [0, 1] → an arm in bandit

• Negative MSE of τ̂w → reward of selecting an arm

Nonpessimistic estimator chooses the arm that maximizes an estimated negative MSE

• It requires a uniform consistency condition: the estimated MSE converges to its
oracle value uniformly across all weights

• Underestimate the bias b → low estimated MSE for small weights → estimated
weight tends to be smaller than the ideal value → a significant bias in τ̂w

• This reveals the limitation of the nonpessimistic estimator when b is moderate or
large.
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Pessimistic Estimator

Main idea: select the arm that maximizes a lower bound of the negative MSE, or
equivalently, an upper bound of the MSE

• Uncertainty quantification: compute an uncertainty quantifier U for the estimated
error such that |b̂ − b| ≤ U with large probability.

• MSE estimation: use |b̂|+U as a pessimistic estimator for the bias b and plug this
estimator into the MSE formula to construct an upper bound of the MSE
M̂SEU(τ̂w ).

• Weight selection: select w that minimizes the upper bound M̂SEU(τ̂w ).
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Theoretical Analysis

Bias Non-pessimistic estimator Pessimistic estimator Optimal estimator

Zero Close to efficiency bound Same order to oracle MSE SPE/Oracle
Small Close to oracle MSE Same order to oracle MSE SPE/Oracle
Moderate May suffer a large MSE Oracle property Oracle
Large Oracle property Oracle property EDO/Oracle

The oracle MSE denotes MSE of the oracle estimator and the efficiency bound is the smallest
achievable MSE among a broad class of regular estimators [Tsiatis, 2006].
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Simulation Study

The effectiveness of different estimators is determined by the magnitude of the bias. To
validate our theory, we further classify b into different regimes as follows

• Small bias regime (SPE estimator is expected to be optimal): |b| ≤ c1

√
Var(b̂);

• Moderatel bias regime (the proposed pessimistic estimator is expected to be

optimal): c1 <
|b|√
Var(b̂)

≤ c2;

• Large bias regime (EDO estimator is expected to be optimal): |b| > c2

√
Var(b̂).

According to our theory, we set c1 = 1 and c2 =
√
log(n). This ensures:

• Scenarios where variance dominates the bias are categorized within the small bias
region.

• When the bias exceeds the established high confidence bound, it is classified under
the large bias regime.
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Simulation Study (Cont’d)
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Simulation Study (Cont’d)
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