# A/B Testing in Two-Sided Marketplaces: Data Integration, Designs and Reinforcement Learning

#### Chengchun Shi

Associate Professor of Data Science London School of Economics and Political Science

# A/B Testing



Taken from

https://towardsdatascience.com/how-to-conduct-a-b-testing-3076074a8458

# Ridesharing



# Ridesharing (Cont'd)



#### Policies of Interest



#### Policies of Interest



#### **Time Series Data**

- Online experiment typically lasts for two weeks
- 30 minutes/1 hour as one time unit
- Data forms a time series  $\{(Y_t, U_t) : 1 \le t \le T\}$
- Observations  $Y_t \in \mathbb{R}^3$ :
  - 1. Outcome: drivers' income or no. of completed orders
  - 2. Supply: no. of idle drivers
  - 3. **Demand**: no. of call orders
- Treatment  $U_t \in \{1, -1\}$ :
  - New order dispatching policy B
  - Old order dispatching policy A

# **Challenges**

#### 1. Carryover Effects:

- Past treatments influence future observations [Li et al., 2024a, Figure 2]  $\longrightarrow$
- Invalidating many conventional A/B testing/causal inference methods [Shi et al., 2023].

#### 2. Partial Observability:

- The environmental state is not fully observable  $\longrightarrow$
- Leading to the violation of the Markov assumption.

#### 3. Small Sample Size:

- Online experiments typically last only two weeks [Xu et al., 2018]  $\longrightarrow$
- Increasing the variability of the average treatment effect (ATE) estimator.

#### 4. Weak Signal:

- ullet Size of treatment effects ranges from 0.5% to 2% [Tang et al., 2019]  $\longrightarrow$
- Making it challenging to distinguish between new and old policies.

To our knowledge, **no** existing method has simultaneously addressed all four challenges.

# **Challenge I: Carryover Effects**



# **Adopting the Closest Driver Policy**



#### Some Time Later · · ·



#### Miss One Order



#### **Consider a Different Action**



#### Able to Match All Orders



# Challenge I: Carryover Effects (Cont'd)

past treatments  $\rightarrow$  distribution of drivers  $\rightarrow$  future outcomes

# **Challenge II: Partial Observability**

Fully Observable
 Markovian Environments



 Partially Observable non-Markovian Environments



# Challenge II: Partial Observability (Cont'd)



# Challenge III & IV: Small sample & Weak Signal

 Aim 1: Design. Identify optimal treatment allocation strategy in online experiment that minimizes MSE of ATE estimator



• Aim 2: Data Integration. Combine experimental data (A/B) with historical data (A/A) to improve ATE estimation [Li et al., 2024b]



# Project I

# Optimal Treatment Allocation Strategies for A/B Testing in Partially Observable Time Series Environments

Joint work with Ke Sun, Linglong Kong & Hongtu Zhu

### **Average Treatment Effect**

- Data summarized into a time series  $\{(Y_t, U_t) : 1 \le t \le T\}$
- The first element of  $Y_t$  denoted by  $R_t$  represents the **outcome**
- ATE = difference in average outcome between the new and old policy

$$\lim_{T\to\infty} \left[ \frac{1}{T} \sum_{t=1}^T \mathbb{E} R_t \right] - \lim_{T\to\infty} \left[ \frac{1}{T} \sum_{t=1}^T \mathbb{E} R_t \right].$$

Letting  $T \to \infty$  simplifies the analysis.

# Alternating-day (AD) Design



# Alternating-time (AT) Design



#### AD v.s. AT

#### Pros of **AD design**:

- Within each day, it is on-policy and avoids distributional shift, as opposed to off-policy designs (e.g., AT)
- On-policy designs are proven optimal in fully observable Markovian environments [Li et al., 2023a].

#### Pros of **AT design**:

- Widely employed in ridesharing companies like Lyft and Didi [Chamandy, 2016, Luo et al., 2024]
- According to my industrial collaborator, AT yields less variable ATE estimators than AD

# AD v.s. AT (Cont'd)

• Q: Why can off-policy designs, such as AT, be more efficient than AD?

• A: Due to partial observability...

# A Thought Experiment

• A simple setting without carryover effects:

$$oldsymbol{R_t} = oldsymbol{eta_{-1}} \mathbb{I}(oldsymbol{U_t} = -1) + oldsymbol{eta_1} \mathbb{I}(oldsymbol{U_t} = 1) + oldsymbol{e_t}$$

• ATE equals  $\beta_1 - \beta_{-1}$  and can be estimated by

$$\widehat{\text{ATE}} = \frac{\sum_{t=1}^{T} R_t \mathbb{I}(\textbf{\textit{U}}_t = \textbf{1})}{\sum_{t=1}^{T} \mathbb{I}(\textbf{\textit{U}}_t = \textbf{1})} - \frac{\sum_{t=1}^{T} R_t \mathbb{I}(\textbf{\textit{U}}_t = -\textbf{1})}{\sum_{t=1}^{T} \mathbb{I}(\textbf{\textit{U}}_t = -\textbf{1})}$$

# A Thought Experiment (Cont'd)

The ATE estimator's asymptotic MSE under AD and AT is proportional to

$$\lim_{t\to\infty}\frac{1}{t}\mathsf{Var}(e_1+e_2+e_3+e_4+\cdots+e_t)\quad\text{and}\quad \lim_{t\to\infty}\frac{1}{t}\mathsf{Var}(e_1-e_2+e_3-e_4+\cdots-e_t)$$

which depends on the residual correlation:

- With uncorrelated residuals, both designs yield same MSEs
- With positively correlated residuals:
  - AD assigns the same treatment within each day, under which ATE estimator's variance inflates due to accumulation of these residuals
  - AT alternates treatments for adjacent observations, effectively negating these residuals, leading to more efficient ATE estimation
- With negatively correlated residuals, AD generally outperforms AT

#### When Can AT Be More Efficient than AD

Key Condition: Residuals are positively correlated

- Rule out full observablity (Markovianity) where residuals are uncorrelated.
- Can only be met under partial observability.
- Suggest partial observability is more realistic, aligning with my collaborator's finding.
- Often satisfied in practice:



Figure: Estimated correlation coefficients between pairs of fitted outcome residuals from the two cities

# **Some Motivating Questions**

 Q1: Previous analysis excludes carryover effects. Can we extend the results to accommodate carryover effects?

 Q2: Previous analysis focuses on AD and AT. Can we consider more general designs?

#### **Our Contributions**

- **Methodologically**, we propose:
  - 1. A controlled (V)ARMA model → allow carryover effects & partial observability
  - 2. Two **efficiency indicators** → compare commonly used designs (AD, AT)
  - 3. A reinforcement learning (RL) algorithm  $\rightarrow$  compute the optimal design
- Theoretically, we:
  - 1. Establish asymptotic MSEs of ATE estimators  $\rightarrow$  compare different designs
  - 2. Introduce weak signal condition → simplify asymptotic analysis in sequential settings
  - 3. Prove the **optimal treatment allocation strategy** is **q**-dependent → form the basis of our proposed RL algorithm
- Empirically, we demonstrate the advantages of our proposal using:
  - 1. A dispatch simulator (https://github.com/callmespring/MDPOD)
  - 2. Two real datasets from ridesharing companies.

#### **Controlled VARMA Model: Introduction**



#### **Controlled VARMA Model: Introduction**



#### Controlled VARMA Model: Connection

- Closely related to state space models or linear quadratic regulator (LQR)
  - The latter being a rich sub-class of partially observable MDPs
  - Using VARMA as opposed to LQR allows to leverage asymptotic theories developed in time series to derive optimal designs
- Compared to MDPs
  - Both controlled VARMA and MDP accommodate carryover effects
  - MDPs require full observability whereas controlled VARMA allows partial observability

#### **Controlled VARMA Model: Estimation**

Consider a univariate controlled ARMA

$$Y_t = \mu + \sum_{j=1}^{p} a_j Y_{t-j} + \underbrace{bU_t}_{\text{Control}} + \varepsilon_t + \sum_{j=1}^{q} \theta_j \varepsilon_{t-j}$$
AR Part

- ullet AR parameters  $\{a_j\}_j$  & control parameter b o ATE, equal to  $2b/\sum_j (1-a_j)$ 
  - ullet Partial observability o standard OLS **fails** to consistently estimate  $oldsymbol{b}$  &  $\{a_j\}_j$
  - Employ Yule-Walker estimation (method of moments) instead
  - Similar to IV estimation, utilize past observations as IVs
- MA parameters  $\{\theta_i\}_i \to \text{residual correlation} \to \text{optimal design}$

# Theory: Weak Signal Condition

- Asymptotic framework: large sample  $T \to \infty$  & weak signal ATE $\to 0$
- **Empirical alignment**: size of ATE ranges from 0.5% to 2%
- **Theoretical simplification**: considerably simplifies the computation of ATE estimator's MSE in sequential settings. According to Taylor's expansion:

$$\widehat{\mathsf{ATE}} - \mathsf{ATE} = \frac{2\widehat{b}}{1 - \sum_j \widehat{a}_j} - \frac{2b}{1 - \sum_j a_j}$$

$$= \frac{2(\widehat{b} - b)}{1 - \sum_j a_j} + \frac{2b}{(1 - \sum_j a_j)^2} \sum_j (\widehat{a}_j - a_j) + o_p \Big(\frac{1}{\sqrt{T}}\Big)$$
Leading term. Easy to calculate its asymptotic variance under weak signal condition

Challenging to obtain the closed form of its asymptotic variance, but negligible under weak signal condition

### Theory: Asymptotic MSE

We focus on the class of **observation-agnostic** designs:

- U<sub>1</sub> is randomly assigned
- ullet The distribution of  $oldsymbol{U_t}$  depends on  $(oldsymbol{U_1},\,\cdots,\,oldsymbol{U_{t-1}})$ , independent of  $(oldsymbol{Y_1},\,\cdots,\,oldsymbol{Y_{t-1}})$

It covers three commonly used designs:

- 1. Uniform random (UR) design:  $\{U_t\}_t$  are uniformly independently generated
- 2. AD:  $U_1 = U_2 = \cdots = U_D = -U_{D+1} = \cdots = -U_{2D} = U_{2D+1} = \cdots$
- 3. AT:  $U_1 = -U_2 = U_3 = -U_4 = \cdots = (-1)^{T-1}U_T$

#### Theorem (Asymptotic MSE)

Given an observation-agnostic design, let  $\xi = \lim_T \sum_{t=1}^T (\mathbb{E} U_t / T)$ . Under the weak signal condition, its ATE estimator's asymptotic MSE (after normalization) equals

$$\lim_{T} \frac{4}{(1-\sum_{j} a_{j})^{2}(1-\xi)^{2}T} Var \Big[ \sum_{t=1}^{T} (\boldsymbol{U}_{t}-\xi)\boldsymbol{e}_{t} \Big].$$

# Theory: Asymptotic MSE (Cont'd)

#### Corollary (Asymptotic MSE)

Under the weak signal condition, the ATE estimator's asymptotic MSE (after normalization) under AD, UR and AT equals

$$\begin{split} \mathsf{MSE}(\mathsf{AD}) &= \frac{4\sigma^2}{(1-\sum_j a_j)^2} \Big[ \sum_{j=0}^q \theta_j^2 + \sum_{j_1 \neq j_2} \theta_{j_1} \theta_{j_2} \Big] \\ \mathsf{MSE}(\mathsf{UR}) &= \frac{4\sigma^2}{(1-\sum_j a_j)^2} \sum_{j=0}^q \theta_j^2 \\ \mathsf{MSE}(\mathsf{AT}) &= \frac{4\sigma^2}{(1-\sum_j a_j)^2} \Big[ \sum_{i=0}^q \theta_j^2 + 2 \sum_{j_1 \neq j_2} (-1)^{|j_2-j_1|} \theta_{j_1} \theta_{j_2} \Big], \end{split}$$

where  $\sigma^2$  denotes the variance of the white noise process.

#### **Design: Efficiency Indicator**

Define two efficiency indicators

$$\mathsf{EI}_1 = \sum_{j_1 \neq j_2} \theta_{j_1} \theta_{j_2} \qquad \text{and} \qquad \mathsf{EI}_2 = \sum_{j_1 \neq j_2} (-1)^{|j_2 - j_1|} \theta_{j_1} \theta_{j_2}.$$

They measure residual correlations and can be used to compare the three designs:

- If both  $EI_1$  and  $EI_2 > 0$ , UR outperforms AD & AT
- If  $\mathsf{EI}_2 < \mathbf{0}$  and  $\mathsf{EI}_1 > \mathsf{EI}_2$ , AT outperforms the rest
- If  $\mathsf{EI}_1 < 0$  and  $\mathsf{EI}_2 > \mathsf{EI}_1$ ,  $\mathsf{AD}$  outperforms the rest

MA parameters can be estimated using historical data (even without treatment data).

#### **Design: Optimality**

#### Theorem (Optimal Design)

The optimal design must satisfy  $\lim_T \sum_{t=1}^T (\mathbb{E} \frac{U_t}{T}) = 0$ . Additionally, it must minimize

$$\sum_{k=1}^{q} \left[ \lim_{T} \left( \frac{1}{T} \sum_{t=1}^{T} \mathbb{E} \underbrace{U_{t} U_{t+k}}_{U_{t+k}} \right) \underbrace{\sum_{j=k}^{q} \theta_{j} \theta_{j-k}}_{C_{k}} \right]$$

Objective: learn the optimal observation-agnostic design that:

- (i) Minimizes the above criterion
- (ii) Maintains a zero mean asymptotically, i.e.,  $\lim_T \sum_{t=1}^T (\mathbb{E} U_t / T) = 0$

#### Design: An RL Approach

**Solution**: reformulate the minimization as an infinite-horizon average-reward RL problem

- State  $S_t$ : the collection of past q treatments  $(U_{t-q}, U_{t-q+1}, \cdots, U_{t-1})$
- Action  $A_t$ : the current treatment  $U_t \in \{-1,1\}$
- Reward  $R_t$ : a deterministic function of state-action pair,  $-\sum_{k=1}^q c_k(U_tU_{t-k})$

#### Easy to verify:

- 1. The minimization objective equals the negative average reward  $\rightarrow$  equivalent to maximizing the average reward
- 2. The process is an **MDP**  $\rightarrow$  there exists an optimal stationary policy maximizes the average reward  $\rightarrow$  optimal design is q-dependent, i.e.,  $U_t$  is a deterministic function of  $(U_{t-q}, U_{t-q+1}, \cdots, U_{t-1})$  & this function is stationary in t
- 3. **Uniformly randomly** assign the first q treatments  $\rightarrow$  the resulting design maintains a zero mean and is indeed optimal

# Design: An RL Approach (Cont'd)



# **Empirical Study: Synthetic Environments**

- A 9 × 9 dispatch simulator
- Available at https://github.com/callmespring/MDPOD
- Two efficiency indicators



ATE estimator's MSE under various designs

| _   |      |      | •    |      | NMDP |      |      |
|-----|------|------|------|------|------|------|------|
| MSE | 8.33 | 2.23 | 1.10 | 0.56 | 0.42 | 0.28 | 0.28 |

#### **Empirical Study: Real Datasets**

• Data:



 We incorporate a seasonal term in our controlled VARMA model to account for seasonality. Below are MSEs of ATE estimators under different designs

| City   | $EI_1$ | $\mathbf{EI}_2$ | AD    | UR    | AT     | Ours |
|--------|--------|-----------------|-------|-------|--------|------|
| City 1 | 20.98  | -21.11          | 11.98 | 11.63 | 9.72   | 8.24 |
| City 2 | -4.89  | 0.22            | 9.64  | 30.04 | 546.79 | 8.38 |

## Project II

# Combining Experimental and Historical Data for Policy Evaluation

— ICML (2024)

Joint work with Ting Li, Qianglin Wen, Yang Sui, Yongli Qin, Chunbo Lai & Hongtu Zhu

# **Data Integration**



# **Example I: A/B Testing with Historical Data**

# Experiment data



Control

- · limited duration
- · weak treatment effect

#### Historical data



#### Control

substantial volume

# Example II: Meta Analysis [Shi et al., 2018]



#### **Example III: Combining Observational Data**

#### **RCT**

- high cost
- · time constraint



#### Observational data

large sample size

# A/B Testing with Historical Data

**Objective**: combine **experimental data** (A/B) with **historical data** (A/A) to improve ATE estimation



Challenge: distributional shift between experimental and historical data

- In **ridesharing**, the **nonstationary** of the environment  $\rightarrow$  distributional shift [Wan et al., 2021]
- In **medicine**: the **heterogeneity** in characteristics of treatment setting  $\rightarrow$  distributional shift [Shi et al., 2018]

#### **Two Base Estimators**



#### A Naive Weighted Estimator

Consider the weighted estimator

$$\widehat{ au}_{m{w}} = m{w}\widehat{ au}_{m{e}} + (m{1} - m{w})\widehat{ au}_{m{h}},$$

for some properly chosen weight  $\mathbf{w} \in [0,1]$  to minimize its  $\mathrm{MSE}(\widehat{\tau}_{\mathbf{w}})$ .

- The weight  $\boldsymbol{w}$  reflects a bias-variance tradeoff. A large  $\boldsymbol{w}$  can:
  - Reduce **bias** of  $\hat{\tau}_{\mathbf{w}}$  caused by the distributional shift between the datasets
  - Increase variance of  $\hat{\tau}_{\mathbf{w}}$  as a result of not fully leveraging the historical data
- Natural to consider the following naive estimator that minimizes an estimated MSE:

$$\widehat{\mathrm{MSE}}(\widehat{\tau}_{\boldsymbol{w}}) = \widehat{\mathrm{Bias}}^2(\widehat{\tau}_{\boldsymbol{w}}) + \widehat{\mathsf{Var}}(\widehat{\tau}_{\boldsymbol{w}}).$$

We refer to this estimator as the **non-pessimistic** estimator.

# **Theoretical Analysis**

Three scenarios, depending on the bias  $b = \mathbb{F}(\widehat{k}) = \mathbb{F}(\widehat{k}) = \widehat{k}$ 

$$oldsymbol{b} = \mathbb{E}(\widehat{oldsymbol{b}}) = \mathbb{E}(\widehat{oldsymbol{ au_h}} - \widehat{oldsymbol{ au_e}})$$

- 1. **Small bias**: **b** is much smaller than the standard deviation of its estimator;
- 2. **Moderate bias**:  $\mathbf{b}$  is comparable to or larger than the standard deviation, yet falls within the high confidence bounds of  $\hat{\mathbf{b}}$ ;
- 3. **Large bias**: **b** is much larger than the estimation error.

#### Three competing estimators:

- 1. **EDO** (experimental-data-only) estimator which sets  $\mathbf{w} = \mathbf{1}$ ;
- SPE (semi-parametrically efficient) estimator [Li et al., 2023b] developed under the assumption of no bias;
- 3. **Oracle** estimator which optimizes w to minimize  $MSE(\hat{\tau}_w)$ ;

# Theoretical Analysis (Cont'd)

| Large    | Oracle property           | EDO/Oracle        |
|----------|---------------------------|-------------------|
| Moderate | May suffer a large MSE    | Oracle            |
| Small    | Close to oracle MSE       | SPE/Oracle        |
| Zero     | Close to efficiency bound | SPE/Oracle        |
| Bias     | Non-pessimistic estimator | Optimal estimator |

The **oracle** MSE denotes MSE of the oracle estimator and the **efficiency bound** is the smallest achievable MSE among a broad class of regular estimators [Tsiatis, 2006].

## **Our Motivating Question**

Can we develop an estimator that works well with moderate bias?

# **Our Proposal**

Main idea: reformulate the weight selection as an offline bandit problem

- Each weight  $\mathbf{w} \in [0,1] \to \text{an arm}$  in bandit
- ullet Negative MSE of  $\widehat{ au}_{oldsymbol{w}} 
  ightarrow {f reward}$  of selecting an arm

**Objective** in bandit: choose the **optimal** arm that maximizes its reward.

#### Multi-Armed Bandit Problem



- The **simplest** RL problem
- A casino with multiple slot machines
- Playing each machine yields an independent **reward**.
- Limited knowledge (unknown reward distribution for each machine) and resources (time)
- Objective: determine which machine to pick at each time to maximize the expected cumulative rewards

#### Offline Multi-Armed Bandit Problem

- **k**-armed bandit problem (**k** machines)
- $A_t \in \{1, \dots, k\}$ : arm (machine) pulled (experimented) at time t
- $R_t \in \mathbb{R}$ : reward at time t
- $Q(a) = \mathbb{E}(R_t|A_t = a)$  expected reward for each arm a (unknown)
- Objective: Given {A<sub>t</sub>, R<sub>t</sub>}<sub>0≤t<T</sub>, identify the best arm



# **Greedy Action Selection (Non-pessimistic Estimator)**

Action-value methods:

$$\widehat{Q}(a) = N^{-1}(a) \sum_{t=0}^{T-1} R_t \mathbb{I}(A_t = a)$$

where  $N(a) = \sum_{t=0}^{T-1} \mathbb{I}(A_t = a)$  denotes the action counter

- Greedy policy:  $\arg \max_{a} \widehat{Q}(a)$
- Less-explored action  $\to N(a)$  is small  $\to$  inaccurate  $\widehat{Q}(a) \to \text{suboptimal}$  policy (see the plot on the right)



#### The Pessimistic Principle

- In **offline** settings
- The less **uncertain** we are about an action-value
- The more **important** it is to use that action
- It could be the **best** action.
- Likely to pick red action
- Yields the lower confidence bound (LCB) algorithm



#### **Lower Confidence Bound**

• Estimate an **lower confidence** L(a) for each action value such that

$$Q(a) \geq \widehat{Q}(a) - L(a),$$

with high probability.

- L(a) quantifies the **uncertainty** and depends on N(a) (number of times arm a has been selected in the historical data)
  - Large  $N(a) \rightarrow \text{small } L(a)$ ;
  - Small  $N(a) \rightarrow \text{large } L(a)$ .
- Select actions maximizing lower confidence bound

$$\mathbf{a}^* = \arg\max_{\mathbf{a}} [\widehat{\mathbf{Q}}(\mathbf{a}) - \mathbf{L}(\mathbf{a})].$$

# Lower Confidence Bound (Cont'd)

- Set  $L(a) = \sqrt{c \log(T)/N(a)}$  for some positive constant c where T is the sample size of historical data
- According to Hoeffding's inequality (<u>link</u>), when rewards are bounded between 0 and 1, the event

$$|Q(a) - \widehat{Q}(a)| \leq L(a),$$

holds with probability at least  $1-2\mathit{T}^{-2\mathit{c}}$  (converges to 1 as  $\mathit{T}\to\infty$ ).

# Lower Confidence Bound (Cont'd)

• 
$$\widehat{Q}(4) > \widehat{Q}(3)$$

• 
$$T = 1605$$
. Set  $c = 1$ .

• 
$$L(3) = \sqrt{\log(T)/N(3)} = 0.272$$

• 
$$L(4) = \sqrt{\log(T)/N(4)} = 1.215$$

• 
$$\widehat{Q}(3) - L(3) > \widehat{Q}(4) - L(4)$$

• 
$$\widehat{Q}(3)$$
- $L(3)$ > max( $\widehat{Q}(1)$ ,  $\widehat{Q}(2)$ )

• Correctly identify optimal action





## Theory

Define the regret, as the difference between the expected reward under the **best arm** and that under the **selected arm**.

#### Theorem (Greedy Action Selection)

Regret of greedy action selection is upper bounded by  $2 \max_{a} |\widehat{Q}(a) - Q(a)|$ , whose value is bounded by  $2\sqrt{c\log(T)/\min_{a}N(a)}$  (according to Hoeffding's inequality) with probability approaching 1

- The upper bound depends on the estimation error of each Q-estimator
- The regret is small when **each** arm has sufficiently many observations
- However, it would yield a large regret when one arm is less-explored
- This reveals the **limitation** of greedy action selection

# Theory (Cont'd)

#### Theorem (LCB; see also Jin et al. [2021])

Regret of the LCB algorithm is upper bounded by  $2\sqrt{c}\log(T)/N(a^{opt})$  where  $a^{opt}$  denotes the best arm with probability approaching 1

- The upper bound depends on the estimation error of best arm's Q-estimator only
- The regret is small when the **best** arm has sufficiently many observations
- This is much weaker than requiring each arm to have sufficiently many observations
- This reveals the advantage of LCB algorithm

#### **Back to Our Problem**

Main idea: reformulate the weight selection as an offline bandit problem

- Each weight  $\mathbf{w} \in [0,1] \rightarrow \text{an arm in bandit}$
- ullet Negative MSE of  $\widehat{ au}_{oldsymbol{w}} 
  ightarrow {f reward}$  of selecting an arm

Nonpessimistic estimator chooses the arm that maximizes an estimated negative MSE

- It requires a **uniform consistency** condition: the estimated MSE converges to its oracle value uniformly across all weights
- Underestimate the bias  $m{b} o$  low estimated MSE for small weights o estimated weight tends to be smaller than the ideal value o a significant bias in  $\widehat{ au}_{m{w}}$
- This reveals the limitation of the nonpessimistic estimator when b is moderate or large.

#### **Pessimistic Estimator**

Main idea: select the arm that maximizes a lower bound of the negative MSE, or equivalently, an upper bound of the MSE

- Uncertainty quantification: compute an uncertainty quantifier U for the estimated error such that  $|\hat{b} b| \le U$  with large probability.
- MSE estimation: use  $|\hat{\boldsymbol{b}}| + \boldsymbol{U}$  as a pessimistic estimator for the bias  $\boldsymbol{b}$  and plug this estimator into the MSE formula to construct an upper bound of the MSE  $\widehat{\text{MSE}}_U(\widehat{\tau}_{\boldsymbol{w}})$ .
- Weight selection: select w that minimizes the upper bound  $\widehat{\mathrm{MSE}}_U(\widehat{\tau}_w)$ .

# **Theoretical Analysis**

| Bias     | Non-pessimistic estimator | Pessimistic estimator    | Optimal estimator |
|----------|---------------------------|--------------------------|-------------------|
| Zero     | Close to efficiency bound | Same order to oracle MSE | SPE/Oracle        |
| Small    | Close to oracle MSE       | Same order to oracle MSE | SPE/Oracle        |
| Moderate | May suffer a large MSE    | Oracle property          | Oracle            |
| Large    | Oracle property           | Oracle property          | EDO/Oracle        |

The **oracle** MSE denotes MSE of the oracle estimator and the **efficiency bound** is the smallest achievable MSE among a broad class of regular estimators [Tsiatis, 2006].

# **Simulation Study**

The effectiveness of different estimators is determined by the magnitude of the bias. To validate our theory, we further classify  $\boldsymbol{b}$  into different regimes as follows

- Small bias regime (SPE estimator is expected to be optimal):  $|m{b}| \leq c_1 \sqrt{ {\sf Var}(\widehat{m{b}})};$
- Moderatel bias regime (the proposed pessimistic estimator is expected to be optimal):  $c_1 < \frac{|\pmb{b}|}{\sqrt{\text{Var}(\widehat{\pmb{b}})}} \le c_2$ ;
- Large bias regime (EDO estimator is expected to be optimal):  $|m{b}| > c_2 \sqrt{{\sf Var}(\widehat{m{b}})}$ .

According to our theory, we set  $c_1 = 1$  and  $c_2 = \sqrt{\log(n)}$ . This ensures:

- Scenarios where variance dominates the bias are categorized within the small bias region.
- When the bias exceeds the established high confidence bound, it is classified under the large bias regime.

# Simulation Study (Cont'd)



# Simulation Study (Cont'd)



#### References I

- Nicholas Chamandy. Experimentation in a ridesharing marketplace. https://eng.lyft.com/experimentation-in-a-ridesharing-marketplace-b39db027a66e, 2016.
- Ying Jin, Zhuoran Yang, and Zhaoran Wang. Is pessimism provably efficient for offline rl? In *International Conference on Machine Learning*, pages 5084–5096. PMLR, 2021.
- Ting Li, Chengchun Shi, Jianing Wang, Fan Zhou, and Hongtu Zhu. Optimal treatment allocation for efficient policy evaluation in sequential decision making. *Advances in neural information processing systems*, 2023a.
- Ting Li, Chengchun Shi, Zhaohua Lu, Yi Li, and Hongtu Zhu. Evaluating dynamic conditional quantile treatment effects with applications in ridesharing. *Journal of the American Statistical Association*, accepted, 2024a.
- Ting Li, Chengchun Shi, Qianglin Wen, Yang Sui, Yongli Qin, Chunbo Lai, and Hongtu Zhu. Combining experimental and historical data for policy evaluation. In *International Conference on Machine Learning*. PMLR, 2024b.

#### References II

- Xinyu Li, Wang Miao, Fang Lu, and Xiao-Hua Zhou. Improving efficiency of inference in clinical trials with external control data. *Biometrics*, 79(1):394–403, 2023b.
- Shikai Luo, Ying Yang, Chengchun Shi, Fang Yao, Jieping Ye, and Hongtu Zhu. Policy evaluation for temporal and/or spatial dependent experiments. *Journal of the Royal Statistical Society, Series B*, 2024.
- Chengchun Shi, Rui Song, Wenbin Lu, and Bo Fu. Maximin projection learning for optimal treatment decision with heterogeneous individualized treatment effects. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, 80(4):681–702, 2018.
- Chengchun Shi, Xiaoyu Wang, Shikai Luo, Hongtu Zhu, Jieping Ye, and Rui Song. Dynamic causal effects evaluation in a/b testing with a reinforcement learning framework. *Journal of the American Statistical Association*, 118(543):2059–2071, 2023.

#### References III

Xiaocheng Tang, Zhiwei Qin, Fan Zhang, Zhaodong Wang, Zhe Xu, Yintai Ma, Hongtu Zhu, and Jieping Ye. A deep value-network based approach for multi-driver order dispatching. In *Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining*, pages 1780–1790, 2019.

Anastasios A Tsiatis. Semiparametric theory and missing data. Springer, 2006.

Runzhe Wan, Sheng Zhang, Chengchun Shi, Shikai Luo, and Rui Song. Pattern transfer learning for reinforcement learning in order dispatching. *arXiv preprint arXiv:2105.13218*, 2021.

Zhe Xu, Zhixin Li, Qingwen Guan, Dingshui Zhang, Qiang Li, Junxiao Nan, Chunyang Liu, Wei Bian, and Jieping Ye. Large-scale order dispatch in on-demand ride-hailing platforms: A learning and planning approach. In *Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining*, pages 905–913, 2018.