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In this supplement, we present a detailed discussion on the equicorrelated points set and the opti-
mal equicorrelated point, additional numerical studies and proofs of theorem 1, theorem 3, theorem

4, lemma 3, theorem 5, and theorem 6.

B. More on the equicorrelated points set and the optimal equicorrelated point

For an arbitrary s x G' matrix ¥, let ¥, be its gth column vector. The equicorrelated points set of

{Uy,...,¥q} is defined by
E(0) = {t e R°[¢TY; = "W, V1 < i, j < G}

To better understand E(¥), in Figure 1, we take s = G = 2, plot ¥; and ¥y as well as the triangle
formed by these two vectors. We further plot the height of the triangle ¥y. Note that U ¥y = U1,

In this small example, we have
E(\I/) = {GO\I/() tap € R}

Further assume ||¥q||2 = ||¥2]]2. Then E(¥) consists of vectors that are parallel to the bisector of
the angle formed by ¥; and Ws.
More generally, for any ¢t € E(¥), it follows from the definition of E(¥) that there exists some

pER,
Tt = pe, (1)
where
e=(1,1,...,1).
AR



2 C. Shi, R. Song, W. Lu and B. Fu

Fig. 1: Plots of ¥y and ¥y (denoted by the square symbol), and ¥y (denoted by the circle symbol)

Obviously, we have 05 € E(V) where 0O refers to an s-dimensional zero vector. Besides, for any

t1,t2 € E(V), we have
\IJTt1 = p1e and \Ithg = pae,
for some constants p1, p2 > 0. Therefore,
Ul a1ty + asta) = (a1p1 + azps)e,

for any a1,as € R. This implies ajt; + aste € E(V). Hence, E(¥) forms a linear subspace in R?.
Moreover, for any ¢ € E(¥), we can represented ¢ by ¢t = to + t, for tg € C(V¥) and t, € N(¥7T)
where C(¥) denotes the column space of ¥ and N(¥7T) denotes the null space of ¥7. By definition,

we have ty = Ywy for some wy € R*. It follows from (1) that
VT ww, = pe.
Assume e € C(UT). Using some standard arguments in linear least square regressions, we have
E(0) = {pU[¥"¥]Te+t,: peR,t, € NI}, (2)

where [UT W]t is the Moore-Penrose inverse of 7.

The optimal equicorrelated point is defined by

E*(0) = T, V1< g<G}.
(V) = arg max {t"¥5,V1 < g< G}
[e]l2=1

By (2), finding E*(¥) is equivalent to the following problem
arg m?xpzeT[\IlT\Il]“‘e, s.t.|t.]|3 + p?el [T W] Te = 1. (3)
Pslx

When e [UTW]te > 0, (3) is maximized at t, = 0, p = (T[T W] te)~1/2, Therefore,

EX(¥) = (T[0T 0] e) 20wl o] e.



Supplement to “Maximin-Projection Learning” 3

This proves lemma 2.
In the following, we show e [UTW¥]*e > 0. When e € C(¥T), there exists some vector w, such
that e = UTw,. Hence, it is equivalent to show w! W[UT W] T WTw, > 0. Note that U[UT W]+ U7 is the
projection matrix of . If w! W[UT W] T WTw, = 0, then w, belongs to the null space of ¥7. However,

this implies ¥7w, = 0¢ and we’ve reached a contradiction. Therefore, we have e! [U7W]*e > 0.

C. Additional simulation results

C.1. Homogeneous individualized treatment effects
As suggested by one of the referee, we further examine our methods under settings where some of

the 3,’s are the same. As in Section 5, responses were generated from

Yy = h(Xgj) + Ang;ng + €gjs

for j =1,...,200, g = 1,....4, Xg; = (X', X)X N(0, 1) and e; * N(0,0.25). We consider
two scenarios. In the first scenario, we set 81 = B2 = (2,0)7, and B3 = 84 = (0,2)”. In the second
scenario, we set (31 = B2 = f3 = B4 = (2cos(45°),2sin(45°))”. By definition, we have

BM = arg max min 78, = {cos(45°),sin(45°)}7,
(© =878 I e fii gy O P = (cos(48), sind57))

and Cé\(/)[) = co/(BOTBfV[O)) =0.

We consider the same four settings as in Section 5. In Table 7, we report the biases and standard
deviations of BM and ¢ based on 600 simulations. Confidence intervals are omitted since it remains
unknown whether our bootstrap procedure is consistent under settings where some of the 3,’s are
the same. From Table 7, it is evident that BM and ¢ are consistent to B(MO) and cf\g) in both two
scenarios, respectively.

We further evaluate the PCD and the VD under the estimated maximin OTR JM(m) = I(xTBM >
—éM) and compare them with those under the estimated pooled OTR dp(z) = I(zT 3" > —éP). The
PCD and the VD under the OTR obtained by random effects meta-analyses are very close to those
under the pooled OTR, and are hence omitted for brevity. Simulation results are summarized in
Table 8, 9, 10 and 11. In Scenario 1, the estimated maximin OTR performs uniformly better than
the estimated pooled OTR. The VD under dy are approximately half larger than those under dp.
In Scenario 2, since ;s are the same, we can show that Br E (2 cos(45°), 2sin(45°))T and & 5o
when either the propensity score model or the baseline mode is correct. The VD under the estimated
maximin OTR are very similar to those under the estimated pooled OTR. Besides, they are very
close to \/2/7 ~ 0.798, which corresponds to the VD under the groupwise OTR. The PCD under the
estimated maximin OTR are sightly lower than those under the estimated pooled OTR. Nonetheless,
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they are above 96% for all cases. This implies the estimated maximin OTR is consistent to the

groupwise OTR in a homogeneous setting.

Table 7: Biases, standard deviations (SD) of BM and ¢M

pM B M
Bias SD Bias SD Bias SD

Setting 1 —0.001 0.022 4.0x10"* 0.022 3.0x107* 0.025

Setting 2 —8.0 x 107*  0.043 —0.002 0.043 —0.001 0.048
Scenario 1

Setting 3 —0.003 0.030 —0.002 0.029 0.001 0.037

Setting 4 —0.003 0.059 —0.002 0.059 —0.002 0.065

Setting 1 —0.001 0.026 —1.0x10~* 0.026 2.0x10~* 0.018

Setting 2 —0.002 0.045 —4.0x10"* 0.045 —0.001 0.034
Scenario 2

Setting 3 —0.003 0.057 —0.002 0.057 —4.0x10"* 0.026

Setting 4 —0.004 0.094 —0.009 0.095 —0.001 0.046

Table 8: VD results (with standard errors in parenthesis) for Scenario 1 under the maximin and pooled OTRs.

Testing group First group  Second group Third group Fourth group

Table 9: PCD results (%, with standard errors in parenthesis) for Scenario 1 under the maximin and pooled

OTRs.

Setting 1 pooled  0.355(0.002)  0.355(0.002)  0.356(0.002)  0.357(0.002)
maximin  0.556(0.001)  0.554(0.001)  0.555(0.001)  0.554(0.001)
Setting 2 pooled  0.354(0.003)  0.355(0.003)  0.355(0.003)  0.355(0.003)
maximin ~ 0.546(0.002)  0.547(0.002)  0.544(0.002)  0.545(0.002)
Setting 3 pooled  0.358(0.004)  0.355(0.003)  0.355(0.003)  0.355(0.004)
maximin  0.552(0.001)  0.550(0.001)  0.553(0.001)  0.550(0.001)
Setting 4 pooled  0.357(0.004)  0.355(0.004)  0.356(0.004)  0.353(0.004)
maximin  0.536(0.002)  0.539(0.002)  0.537(0.002)  0.536(0.002)




Table 10: VD results (with standard errors in parenthesis) for Scenario 2 under

OTRs.
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Testing group

First group Second group Third group Fourth group

Setting 1

Setting 2

Setting 3

Setting 4

pooled 64.7(0.1)
maximin  74.6(<0.1)
pooled 64.7(0.1)
maximin  74.1(0.1)
pooled 64.9(0.2)
maximin  74.4(0.1)
pooled 65.0(0.2)
maximin  73.6(0.1)

64.7(0.1)
74.5(<0.1)
64.7(0.1)

64.8(0.1)
74.5(<0.1)
64.7(0.1)

64.8(0.1)
74.5(<0.1)
64.8(0.1)
74.0(0.1)
64.8(0.2)
74.3(0.1)
64.8(0.2)
73.6(0.1)

the maximin and pooled

Testing group

First group

Second group

Third group

Fourth group

Setting 1

Setting 2

Setting 3

Setting 4

pooled
maximin
pooled
maximin
pooled
maximin
pooled

maximin

0.798(<0.001
0.797(<0.001
0.797(<0.001
0.796(<0.001
0.797(<0.001
0.795(<0.001
0.794(<0.001

(

)
)
)
)
)
)
)
0.790(<0.001)

0.798(<0.001
0.797(<0.001
0.797(<0.001
0.796(<0.001
0.797(<0.001
0.795(<0.001
0.794(<0.001

(

)
)
)
)
)
)
)
0.790(<0.001)

0.797(<0.001
0.797(<0.001
0.797(<0.001
0.796(<0.001
0.797(<0.001
0.795(<0.001
0.794(<0.001

(

)
)
)
)
)
)
)
0.790(<0.001)

0.798(<0.001
0.797(<0.001
0.797(<0.001
0.796(<0.001
0.797(<0.001
0.795(<0.001
0.794(<0.001

(

)
)
)
)
)
)
)
0.789(<0.001)

y
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Table 11: PCD results (%, with standard errors in parenthesis) for Scenario 2 under the maximin and pooled

OTRs.

Testing group First group Second group Third group Fourth group
pooled 99.1(<0.1) 99.1(<0.1) 99.1(<0.1) 99.1(<0.1)
Setting 1
maximin  98.8(<0.1) 98.8(<0.1) 98.8(<0.1) 98.8(<0.1)
pooled 98.6(<0.1) 98.5(<0.1) 98.5(<0.1) 98.5(<0.1)
Setting 2
maximin  98.0(<0.1) 97.9(<0.1) 98.0(<0.1) 98.0(<0.1)
pooled 98. 3(< 1) 98.3(< 1) 98.4(<0.1) 98.3(< 1)
Setting 3
maximin 7.7(0.1) 7.7(0.1) 97.7(0.1) 7.7(0.1)
pooled 97. 4(0 1) 97.2(0.1) 97.3(0.1) 97.1(0.1)
Setting 4
maximin  96.1(0.1) 96.2(0.1) 96.2(0.1) 96.0(0.1)

C.2. Non-normal covariates

We further examine the robustness of our estimator with non-normal covariates. We consider the

same model as in Section 5,

Yy = h(Xg5) + AQ]Xg]Bg + €gjs

for 5 = 1,...,200, g = 1,...,4, where ¢4 w N(0,0.25). Covariates Xg; = (X(l) X( )) were

93
generated from the following distributions:
(i) Xéj i t(4)/v?2, for j = 1,...,200,g = 1,...,4,k = 1,2, where t(k) stands for the Student’s

t-distribution with k£ degrees of freedoms.
(i) X % 2Ber(0.5) — 1, X\ % N(0,1), for j =1,...,200,g = 1,...,4, where Ber(p) denotes the
Bernoulli random variable with success probability p. Besides, X (1) and X, gj)é are independent, for
any gi, 92, Jji, Jj2-

(i) X{ % N(0,1), X % 13)/v3, X5 W wa) V2, X W u(5)/\/578, for j = 1,...,200,
g=1,...,4, k=1,2. Besides, Xy;,, Xoj,, X3j, and Xy;, are independent for any j1, j2, j3, Ja-

Note that in (iii), the distributions of the covariates are allowed to vary across different groups. We
consider the same two scenarios for §,’s, and the same four settings for the propensity score models
and the baseline models as in Section 5. We conduct 600 simulation replications. In Table 12, 13 and
14, we report the biases and standard deviations of BM and ¢M, as well as the coverage probabilities
(CP) of 95% Wald-type confidence intervals for B(J\g) and cé\g) when covariates are generated as in (i),
(ii) and (iii), respectively. The confidence intervals are calculated based on 600 bootstrap samples.

Findings are similar to those with normal covariates.
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Table 12: Biases, standard deviations (in parenthesis) of 3, é™ and coverage probabilities (CP) of 95%

Wald-type confidence intervals for 6(MO), cé\g) when covariates are generated as in (i).

Scenario 1 pM M eM CP for M CP for g} CP for éM
Setting 1~ -0.002(0.02) 0.001(0.019)  -0.0004(0.026) 97.7% 97.7% 94.2%
Setting 2 -0.002(0.035) -0.0001(0.035)  -0.002(0.044) 96.2% 96.2% 94.5%
Setting 3 -0.003(0.035)  0.001(0.035)  -0.002(0.038) 95.2% 95.2% 94.3%
Setting 4  -0.003(0.06)  -0.002(0.061)  -0.006(0.071) 96.8% 96.8% 92.7%
Scenario 2 B{W Bé‘/f eM CP for B{W CP for Béw CP for &M
Setting 1 -0.001(0.027) -0.0003(0.027) -0.0004(0.025) 97.2% 97.2% 94.2%
Setting 2 0.002(0.044)  -0.005(0.044)  -0.002(0.041) 96.2% 96.2% 94.5%
Setting 3 -0.008(0.086)  -0.003(0.085)  -0.002(0.036) 95.0% 95.0% 94.2%
Setting 4  -0.027(0.133)  0.003(0.127)  -0.005(0.065) 97.8% 97.8% 92.7%

Table 13: Biases, standard deviations (in parenthesis) of BM_ eM and coverage probabilities (CP) of 95%

Wald-type confidence intervals for 6%)7 cé\g) when covariates are generated as in (ii).

Scenario 1 /M pM M CP for BM  CP for M  CP for ¢M
Setting 1~ -0.0004(0.026)  -0.001(0.026) -0.001(0.025) 96.7% 96.7% 93.8%
Setting 2 -0.00001(0.047)  -0.003(0.046) -0.001(0.039) 94.8% 94.8% 97.3%
Setting 3 -0.001(0.032) -0.001(0.032) -0.0001(0.037) 94.7% 94.7% 94.8%
Setting 4 -0.003(0.055) -0.001(0.053) -0.023(0.046) 95.3% 95.3% 93.3%
Scenario 2 pM pM eM CP for M CP for g} CP for éM
Setting 1 -0.001(0.032)  -0.0002(0.032)  -0.001(0.024) 96.8% 96.8% 93.8%
Setting 2 -0.0003(0.061)  -0.005(0.062) -0.001(0.037) 98.0% 98.0% 97.3%
Setting 3 -0.007(0.086) -0.003(0.084)  -0.00003(0.034) 93.8% 93.8% 94.8%
Setting 4  -0.007(0.118)  -0.014(0.121)  -0.021(0.043) 96.8% 96.8% 93.3%
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Table 14: Biases, standard deviations (in parenthesis) of 4™, ¢™ and coverage probabilities (CP) of 95%

Wald-type confidence intervals for ﬁ(MO), cé\g) when covariates are generated as in (iii).

Scenario 1 pM By eM CP for M CP for g}  CP for éM
Setting 1~ 0.0004(0.027) -0.001(0.027) 0.001(0.025) 97.5% 97.5% 95.0%
Setting 2 0.001(0.05) -0.005(0.05) 0.001(0.042) 97.0% 97.0% 94.0%
Setting 3 0.0002(0.038) -0.002(0.038)  -0.001(0.034) 96.5% 96.5% 94.8%
Setting 4  -0.002(0.074) -0.006(0.076) -0.00005(0.051) 95.8% 95.8% 95.7%
Scenario 2 B{Vf Bé‘/f M CP for B{VI CP for Bé‘/[ CP for ¢M
Setting 1~ 0.001(0.042)  -0.003(0.042) 0.001(0.024) 97.3% 97.3% 95.0%
Setting 2 -0.006(0.084)  -0.004(0.083) 0.001(0.041) 97.7% 97.7% 94.0%
Setting 3 -0.004(0.088) -0.007(0.088)  -0.001(0.032) 96.5% 96.5% 94.8%
Setting 4  -0.020(0.137) -0.006(0.132)  0.0001(0.047) 98.0% 98.0% 95.7%

In Table 15-20, we present the VD under the estimated maximin OTR and the estimated pooled
OTR. The PCD results are reported in Table 23-28 in Section C.3. The VD and the PCD under the
OTR estimated by random effects meta-analyses are omitted, since they are very close to those under
the pooled OTR. It can be seen that in Scenario 1, the maximin OTR. are uniformly better than the
pooled OTR over all groups. In Scenario 2, the VD under the maximin OTR are larger than those
under the pooled OTR when the first group is taken as the testing group. When other groups are

taken as the testing groups, the VD under the maximin and the pooled OTRs become comparable.

Table 15: The VD results (with standard errors in parenthesis) under the estimated maximin OTR and the

pooled OTR for Scenario 1 when covariates are generated as in (i).

Testing group First group  Second group  Third group  Fourth group
Setting 1 pooled  0.410(0.002)  0.579(0.002) 0.598(0.002)  0.371(0.002)
maximin  0.465(0.001) 0.637(<0.001) 0.667(<0.001) 0.445(0.001)

Setting 2 pooled  0.409(0.002)  0.578(0.002) 0.595(0.002)  0.368(0.002)
maximin  0.464(0.002)  0.636(0.001) 0.664(0.001)  0.439(0.002)

. pooled  0.409(0.002)  0.575(0.002) 0.598(0.002)  0.377(0.002)
Setting 3 maximin  0.464(0.001)  0.637(0.001) 0.665(0.001)  0.443(0.002)
Setting 4 pooled  0.406(0.003)  0.572(0.002) 0.595(0.002)  0.377(0.003)
maximin  0.456(0.003)  0.633(0.001) 0.659(0.001)  0.427(0.003)
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Table 16: The VD results (with standard errors in parenthesis) under the estimated maximin OTR and the

pooled OTR for Scenario 2 when covariates are generated as in (i).

Testing group

First group

Second group

Third group

Fourth group

Setting 1

Setting 2

Setting 3

Setting 4

pooled
maximin
pooled
maximin
pooled
maximin
pooled

maximin

0.752(<0.001)
0.782(<0.001)
0.751(<0.001)
0.779(0.001)
0.751(0.001)
0.779(0.001)
0.748(0.001)
0.767(0.002)

0.551(<0.001
0.545(<0.001
0.551(<0.001
0.544(<0.001
0.551(<0.001
0.545(<0.001
0.550(<0.001

(

)
)
)
)
)
)
)
0.543(<0.001)

0.798(<0.001)
0.798(<0.001)
0.797(<0.001)
0.796(<0.001)
0.797(<0.001)
0.795(0.001)
0.795(<0.001)
0.789(0.001)

0.704(<0.001)
0.709(<0.001)
0.703(<0.001)
0.706(0.001)
0.704(<0.001)
0.706(0.001)
0.702(0.001)
0.698(0.001)

Table 17: The VD results (with standard errors in parenthesis) under the estimated maximin OTR and the

pooled OTR for Scenario 1 when covariates are generated as in (ii).

Testing group

First group

Second group

Third group Fourth group

Setting 1

Setting 2

Setting 3

Setting 4

pooled
maximin
pooled
maximin
pooled
maximin
pooled

maximin

0.447(0.002
0.559(0.002
0.447(0.002
0.558(0.003
0.450(0.003
0.558(0.002
0.451(0.004

(

)
)
)
)
)
)
)
0.554(0.004)

0.657(0.002)
0.785(0.001)
0.654(0.002)
0.781(0.002)
0.658(0.003)
0.785(0.001)
0.658(0.004)
0.778(0.002)

0.523(0.002)
0.686(0.001)
0.525(0.003)
0.685(0.002)
0.525(0.004)
0.685(0.001)
0.525(0.004)
(0.002)

0.684(0.002

0.132(0.002
0.284(0.002
0.137(0.003
0.286(0.004
0.139(0.004
0.282(0.003
0.146(0.005
(

)
)
)
)
)
)
)
0.287(0.004)
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Table 18: The VD results (with standard errors in parenthesis) under the estimated maximin OTR and the

pooled OTR for Scenario 2 when covariates are generated as in (ii).

Testing group

First group

Second group

Third group

Fourth group

Setting 1

Setting 2

Setting 3

Setting 4

pooled
maximin
pooled
maximin
pooled
maximin
pooled

maximin

0.846(0.001)
0.915(0.001)
0.846(0.001)
0.913(0.001)
0.845(0.001)
0.907(0.002)
0.844(0.002)
0.900(0.003)

0.617(<0.001)
0.604(<0.001)
0.616(<0.001)
0.604(0.001)
0.616(<0.001)
0.606(<0.001)
0.614(<0.001)
0.606(0.001)

0.869(<0.001)

0.870(0.001)
0.868(0.001)
0.864(0.001)
0.866(0.001)
0.862(0.001)
0.862(0.001)
(0.002)

0.847(0.002

0.745(<0.001)

0.758(0.001)
0.744(0.001)
0.751(0.001)
0.741(0.001)
0.751(0.002)
0.737(0.002)
(0.003)

0.735(0.003

Table 19: The VD results (with standard errors in parenthesis) under the estimated maximin OTR and the

pooled OTR for Scenario 1 when covariates are generated as in (iii).

Testing group

First group

Second group

Third group

Fourth group

Setting 1

Setting 2

Setting 3

Setting 4

pooled
maximin
pooled
maximin
pooled
maximin
pooled

maximin

0.388(0.003)
0.483(0.001)
0.388(0.003)
0.481(0.003)
0.395(0.003)
0.481(0.002)
0.397(0.004)
(0.003)

0.476(0.003

0.537(0.001)
0.584(<0.001)
0.536(0.001)
0.583(0.001)
0.537(0.002)
0.584(0.001)
0.535(0.002)
0.581(0.001)

0.604(0.001)

0.667(<0.001)

0.602(0.001
0.664(0.001
0.599(0.002
0.666(0.001
0.594(0.002
0.660(0.001

—_— — — — ~— ~—

0.378(0.002
0.453(0.001
0.377(0.002
0.445(0.002
0.371(0.002
0.450(0.001
0.366(0.003

(

)
)
)
)
)
)
)
0.435(0.003)
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Table 20: The VD results (with standard errors in parenthesis) under the estimated maximin OTR and the

pooled OTR for Scenario 2 when covariates are generated as in (iii).

Testing group First group Second group  Third group Fourth group

Setting 1 pooled  0.801(<0.001) 0.506(<0.001) 0.798(<0.001) 0.724(<0.001)
maximin  0.845(0.001)  0.500(<0.001) 0.799(<0.001) 0.731(<0.001)
Setting 2 pooled  0.800(0.001)  0.505(<0.001) 0.797(<0.001)  0.724(<0.001)
maximin  0.838(0.001)  0.500(<0.001)  0.796(0.001)  0.728(0.001)
etting 3 pooled  0.802(0.001)  0.505(<0.001) 0.797(<0.001) 0.723(<0.001)
maximin  0.840(0.001)  0.501(<0.001)  0.795(0.001)  0.727(0.001)
Seting 4 pooled  0.801(0.001)  0.504(<0.001) 0.795(<0.001)  0.721(0.001)
maximin  0.827(0.002)  0.499(<0.001)  0.788(0.001)  0.717(0.002)

C.3. Additional tables

Table 21: The PCD results (%, with standard errors in parenthesis) for Scenario 1 under the estimated
maximin OTR dy, the pooled OTR dp and the OTR estimated by random effects meta-analyses dg.

Testing group  First group Second group Third group Fourth group

dp  67.1(0.1) 77.6(0.1) 79.2(0.1) 65.3(0.1)
Setting 1 dr  67.1(<0.1)  77.6(<0.1)  79.2(<0.1)  65.2(<0.1)
dy  70.9(0.1) 83.3(0.1) 86.1(0.1) 69.5(0.1)
dp  67.1(0.1) 77.6(0.1) 79.1(0.1) 65.2(0.1)
Setting 2 dr  67.0(<0.1)  77.6(<0.1)  79.2(<0.1)  65.2(<0.1)
dy  70.8(0.1) 83.3(0.1) 85.9(0.1) 69.3(0.1)
dp  67.1(0.1) 77.6(0.1) 79.2(0.1) 65.3(0.1)
Setting 3 dr  67.0(0.1) 77.5(0.1) 79.2(0.1) 65.2(0.1)
dy  70.8(0.1) 83.2(0.1) 86.2(0.1) 69.3(0.1)
dp  67.1(0.2) 77.6(0.2) 79.3(0.2) 65.3(0.2)
Setting 4 drp  67.1(0.1) 77.5(0.1) 79.2(0.1) 65.2(0.1)
dy  70.4(0.2) 83.2(0.1) 85.7(0.1) 68.7(0.2)
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Table 22: The PCD results (%, with standard errors in parenthesis) for Scenario 2 under the estimated
maximin OTR JM, the pooled OTR dp and the OTR estimated by random effects meta-analyses dg.

Testing group  First group Second group Third group Fourth group

dp  86.8(<0.1)  98.2(<0.1)  94.6(<0.1)  90.4(<0.1)
Setting 1 dr  86.8(<0.1)  98.4(<0.1)  94.6(<0.1)  90.4(<0.1)

dy  91.7(0.1) 94.6(0.1) 94.9(0.1) 91.6(0.1)
dp  86.8(0.1) 97.9(<0.1) 94.5(0.1) 90.3(0.1)
Setting 2 dr  86.8(<0.1)  98.3(<0.1)  94.6(<0.1)  90.4(<0.1)
dy  91.5(0.1) 94.6(0.1) 94.8(0.1) 91.5(0.1)
dp  86.8(0.1) 97.8(<0.1) 94.6(0.1) 90.4(0.1)
Setting 3 dr  86.7(0.1) 97.8(<0.1) 94.6(0.1) 90.4(0.1)
dy  91.5(0.1) 94.8(0.1) 94.5(0.1) 91.6(0.1)
dp  86.7(0.1) 96.9(0.1) 94.3(0.1) 90.3(0.1)
Setting 4 dr  87.0(0.1) 97.8(<0.1) 94.4(0.1) 90.2(0.1)
dy 90.3(0.2) 94.7(0.1) 93.7(0.2) 91.0(0.2)

Table 23: The PCD results (%, with standard errors in parenthesis) under the estimated maximin OTR and

the pooled OTR for Scenario 1 when covariates are generated as in (i).

Testing group First group Second group Third group Fourth group

pooled 68.0(0.1) 79.4(0.1) 80.8(0.1) 65.9(0.1)

Setting 1
maximin  71.3(0.1) 84.3(<0.1) 87.2(<0.1) 70.0(0.1)
pooled 68.0(0.1) 79.4(0.1) 80.6(0.1) 65.7(0.1)

Setting 2
maximin  71.3(0.1) 84.3(0.1) 87.0(0.1) 69.7(0.1)
pooled 68.0(0.1) 79.2(0.1) 80.9(0.1) 66.2(0.1)

Setting 3
maximin  71.3(0.1) 84.4(0.1) 87.0(0.1) 70.0(0.1)
pooled 67.9(0.1) 79.0(0.2) 80.7(0.2) 66.3(0.2)

Setting 4
maximin  70.9(0.2) 84.2(0.1) 86.6(0.1) 69.2(0.2)
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Table 24: The PCD results (%, with standard errors in parenthesis) under the estimated maximin OTR and

the pooled OTR for Scenario 2 when covariates are generated as in (i).

Testing group First group Second group Third group Fourth group

pooled 88.3(<0.1) 98.3(<0.1) 95.1(<0.1) 91.3(<0.1)

Setting 1
maximin  92.6(0.1) 95.2(0.1) 95.3(0.1) 92.3(0.1)
pooled 88.3(0.1) 97.8(<0.1) 94.9(0.1) 91.1(0.1)

Setting 2
maximin  92.4(0.1) 95.0(0.1) 94.9(0.1) 92.0(0.1)
pooled 88.2(0.1) 97.8(<0.1) 95.0(0.1) 91.3(0.1)

Setting 3
maximin  92.5(0.1) 95.4(0.1) 94.9(0.1) 92.1(0.1)
pooled  88.1(0.1) 97.1(0.1) 94.6(0.1) 91.3(0.1)

Setting 4
maximin  91.4(0.2) 94.9(0.1) 94(0.2) 91.4(0.2)

Table 25: The PCD results (%, with standard errors in parenthesis) under the estimated maximin OTR and

the pooled OTR for Scenario 1 when covariates are generated as in (ii).

Testing group First group Second group Third group Fourth group

pooled 72.3(0.1) 75.7(0.1) 70.4(0.1) 53.0(0.1)

Setting 1
maximin  77.9(0.1) 84.2(0.1) 80.0(0.1) 57.6(0.1)
pooled 72.3(0.1) 75.5(0.1) 70.6(0.1) 53.2(0.1)

Setting 2
maximin  77.9(0.2) 84.0(0.1) 80.1(0.1) 57.9(0.1)
pooled 72.5(0.2) 75.9(0.2) 70.9(0.2) 53.3(0.1)

Setting 3
maximin  77.9(0.1) 84.2(0.1) 80.0(0.1) 57.6(0.1)
pooled 72.6(0.2) 75.9(0.3) 71.2(0.2) 53.7(0.1)

Setting 4
maximin  77.7(0.2) 83.8(0.2) 80.2(0.2) 58.0(0.2)
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Table 26: The PCD results (%, with standard errors in parenthesis) under the estimated maximin OTR and

the pooled OTR for Scenario 2 when covariates are generated as in (ii).

Testing group First group Second group Third group Fourth group

pooled 81.0(<0.1) 97.6(<0.1) 92.0(0.1) 85.8(0.1)

Setting 1
maximin  88.3(0.1) 92.1(0.1) 92.5(0.1) 87.7(0.1)
pooled 81.0(0.1) 97.2(0.1) 92.1(0.1) 85.9(0.1)

Setting 2
maximin  88.4(0.2) 92.5(0.2) 92.2(0.2) 87.5(0.2)
pooled 80.9(0.1) 97.0(0.1) 92.1(0.1) 85.8(0.1)

Setting 3
maximin  88.0(0.2) 92.9(0.1) 92.3(0.2) 87.9(0.2)
pooled 81.0(0.2) 96.2(0.1) 92.0(0.2) 85.7(0.2)

Setting 4
maximin  87.8(0.3) 93.2(0.2) 91.2(0.3) 87.3(0.3)

Table 27: The PCD results (%, with standard errors in parenthesis) under the estimated maximin OTR and

the pooled OTR for Scenario 1 when covariates are generated as in (iii).

Testing group First group Second group Third group Fourth group

Setting 1 pooled 66.2(0.1) 80.0(0.1) 81.2(0.1) 65.9(0.1)
maximin  70.7(0.1) 84.7(<0.1) 87.2(<0.1) 69.9(0.1)

pooled 66.3(0.1) 79.9(0.1) 81.1(0.1) 65.9(0.1)

maximin  70.7(0.1) 84.7(0.1) 86.9(0.1) 69.5(0.1)

pooled 66.6(0.1) 80.1(0.1) 80.9(0.1) 65.6(0.1)

maximin  70.6(0.1) 84.7(0.1) 87.2(0.1) 69.8(0.1)

pooled 66.7(0.2) 80.1(0.2) 80.7(0.2) 65.4(0.2)

maximin  70.5(0.2) 84.6(0.1) 86.7(0.1) 69.1(0.2)




Supplement to “Maximin-Projection Learning” 15

Table 28: The PCD results (%, with standard errors in parenthesis) under the estimated maximin OTR and

the pooled OTR for Scenario 2 when covariates are generated as in (iii).

Testing group First group Second group Third group Fourth group

pooled 86.6(<0.1) 98.3(<0.1) 95.1(<0.1) 91.1(<0.1)

Setting 1
maximin  91.5(0.1) 95.3(0.1) 95.5(0.1) 92.4(0.1)
pooled 86.6(0.1) 97.8(<0.1) 94.9(0.1) 91.1(0.1)

Setting 2
maximin  91.1(0.2) 95.2(0.1) 95.0(0.1) 92.2(0.1)
pooled 86.8(0.1) 97.8(<0.1) 95.0(0.1) 91.0(0.1)

Setting 3
maximin  91.4(0.2) 95.5(0.1) 95.0(0.1) 92.2(0.1)
pooled 86.9(0.1) 97.0(0.1) 94.6(0.1) 90.9(0.1)

Setting 4
maximin  90.4(0.2) 95.1(0.1) 93.8(0.2) 91.3(0.2)

D. The schizophrenia data

Tarrier et al. (2004) conducted a multi-center, randomized controlled trial with 18-month follow-up ,
to examine the effects of cognitive-behavioral therapy (CBT) and supportive counselling (SC) on the
outcomes of an early episode of schizophrenia. Patients were randomized to three treatment options,
including the cognitive-behavioural therapy plus treatment as usual (CBT), supportive counselling
plus treatment as usual (SC) and treatment as usual (TAU). The primary outcome, the Positive and
Negative Syndromes Schedule (PANSS, Kay et al., 1987), was measured at baseline and the end of
follow-up. Patients’ durations of untreated psychosis, years of education and social functioning scores
were also recorded at baseline.

As previous studies showed that both psychological treatment groups (CBT and SC) had a superior
treatment effect compared to the control group (TAU), we focus on comparing two treatment arms:
CBT (A = 1) and SC (A = 0) to determine individual OTRs. The reduction of PANSS score
at the 18th month’s visit is set as a patient’s response Y. We consider two covariates: PANSS
score at baseline (X)) and log duration of untreated psychosis (X()). Over 400 patients were
initially enrolled in 3 treatment centres. Among them, only 165 finished the follow-up study and
had completed records of the final response and baseline information. 85 of them received CBT or
SC. As in Tarrier (2004), we classify 85 patients into 3 groups according to their treatment centres
(Manchester, Liverpool and North Nottinghamshire). We first standardize the two covariates such
that their sampling covariance matrix equals the identity matrix within each group and then jointly
estimate cg, 841, Bg2 by the A-learning estimating equations as discussed previously. Estimators for

Bg1 and Bg2 are given in Table 29.
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Table 29: Estimators of groupwise OTR (standard errors in paranthesis) for the CBT study.

Group 1 Group 2 Group 3

By 1.35(10.21)  1.17(11.52)  —20.71(13.27)
Bge T7.87(10.39) —10.56(8.84)  3.45(9.14)

Differences of 4 between different groups are not statistically significant. The large standard
errors are due to the small sample size of each group. However, some of the estimated coefficients Bgi’s
among different groups are not even sign consistent, indicating potential existence of heterogeneity
in optimal treatment regimes across different groups.

We adopt the leave-one-group-out cross validation procedure as done in the previous example. We
report the estimated maximin OTR CZM, the estimated pooled OTR d p, the OTR obtained based on
random effects models ch, as well as the corresponding estimated value functions in Table 30. All
three OTRs have similar value functions for Groups 1 and 2. However, for Group 3, value function

under the maximin OTR is much higher than those under other OTRs.

Table 30: d}m (fp, d r and their estimated value functions.

Testing group Group 1 Group 2 Group 3

dar dp dr dnm dp dr dar dp dr

¢ 033 —-1.13 —-1.25 4.25 4.52 3.26 2.72 1.83 1.0
Ieh 0.11 -045 -279 1.00 -—-242 —-2.89 1.00 0.04 0.11
Ba -099 -045 -3.15 -0.07r -3.23 -5.06 —-0.01 3.86 4.62
EYg*(d) 26.25 25.66 2532 29.92 30.81 32.04 24.01 16.29 14.36

E. Proofs

E.1. Proof of theorem 1

We use the same notations in the proof of theorem 2. To prove theorem 1, we will show that for
any fixed ¢, function PCDy(f3, c) can be presented as Ez/J(BTBg, T') for some random variable 7" and
function (-, -). In addition, v (-,t) is monotone increasing for fixed ¢. Then the assertion of theorem
1 follows by an application of lemma 4.

Without loss of generality, assume [|34||2 = 1 for all g. Recall that

PCDy(B,c) = 1-E[I(X[B>—c)—I(X]By> —co)l=1-EB|I(X]B>—c)— I(X]By > —co)|?
= 1-Pr(X]B>—c)—Pr(X] By > —co) + 2Pr(X] B > —¢, X By > —cp). (4)

Similar to the proof of theorem 2, we can show Pr(XgTﬁ > —c) is constant as a function of {5 € R*:
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|Bll2 = 1}. Similarly, under the condition that |12 = - -+ = ||Bal|2, we can show Pr(XgTﬁg > —cp)’s

are the same for all g. Combining these with (4), we obtain
PCD,(B,¢) = 2Pr(XT B > —¢, XT B, > —co) + £(c), (5)
for some function £ independent of 8. Recall B(Ml) = argming PCDy(f, ¢). By (5), we have
ﬁ(Ml) = argmaxmginPr(XTﬁ > —c, XTBQ > —cp).
Therefore, it suffices to show for all § subject to the constraint ||5]|2 = 1,
mginPr(XTﬁ > —c,XTﬁg > —¢p) < rrgnPr(XTﬁM > —c, XTﬁg > —qp). (6)
It follows from lemma F.1 that for all g, there exists an orthogonal matrix I'; such that
T,8=(1,0,...,0)7, TyBy = (8784 1/1— (875,)20,...,0)T.
This implies

Pr(XTB > —c, X"y > —co) = Pr(XTT Ty > —c, X T} T 4By > —cp) (7)

= Pr(XTTy8 > —¢, XTTyB8, > —co) = Pr (X<1> > —c, XWpTp+ X, /1 (BT)2 > —c0> ,

where the second equality is due to the fact that X is spherically distributed (see Definition F.1), and
that X and X® are the first two components of the random vector X. It follows from theorem

2.6 in Fang et al. (1990) that
(XD, x@) L rq(tr, Uy), (8)

with r = || X2, d ~ B(1,p/2 — 1), Uy and Us uniformly distributed on the surface u? + u3 = 1,
where B(p, q) stands for the Beta distribution with parameters p,q. The random variables r,d are

independent of Uy and Usy. Set T' = rd. Combining this with (7) gives
Pr(X7T8 > —¢,XTB, > —cy) = Pr {TUl > —c, <,BTBQU1 +4/1— (5T59)2U2) T > —co} . (9)

For fixed T' = ¢, the right-hand side of (9) is a function of ﬁTﬁg only. Moreover, it can be further

represented as

Eh(BT B, )T =t|=E [Pr {tUl > —c, <5T59U1 +4/1— (ﬁTﬁg)2U2> t> co} T = t] ,

by the independence between T" and U;, Us. By lemma 4, it suffices to show that Ah(-,t) is mono-
tonically increasing as a function of ,BTﬂg for all t. When t = 0, this becomes trivial. Assume t > 0

and consider, separately, the cases where {¢ < 0,¢9 < 0}, {¢ > 0,¢9 < 0}, {¢ < 0,¢9 > 0} and
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{¢ > 0,¢9 > 0}. We only show h is monotonically increasing as a function of BTﬁg when ¢ < 0,¢9 <0

and ¢ > 0,cg < 0. In other two cases, the assertion can be established using similar arguments.
Case 1: ¢ <0, cg < 0. When either of ¢ or ¢y is smaller than or equal to —t, h = 0. It suffices

to consider when —c/t = sinyy, —co/t = sinepy for 1,9 € [0,7/2). Write SBT3, = cos(v3) for

3 € [0, 7]. We now argue h is decreasing as 13 increases. Recall
h = Pr(U; > siny, cos(13)U; + sin(1p3)Us > sin)g). (10)

Note that U; and Us can be presented as Uy = sin ® and Us = cos © for some random variable ©

uniformly distributed on [0, 27]. With some calculation, RHS of (10) is equal to

Pr(sin © > sin )y, sin(© + 13) > sin ) (11)
= Pr(¢n <O <m =1, — 93 <O <7 — 9Py —13)

= %[min(w — 1, T — g — 1b3) — max(¢1, o — ¥3)] 4

1

B 27[7[-_1;[)2_w3_max(¢1v¢2_¢3)]+a o >y,

%[min(ﬂ — Y1, T — P2 —P3) — 1]y, P2 <y,

where [a]+ 2 max(a,0) for any real number a. Combining (10) with (11), we can see function h
decreases as 13 increases.

Case 2: ¢ >0, cg <0. When ¢y < —t, h =0. When ¢ > t,

h =Pr (UlﬁTﬁg + UQ\/ 1- (ﬁT,Bg)2 > —Co/t) = PI‘(Ul > —Co/t),

which is a constant and does not change with 6Tﬁg. Hence, it suffices to consider cases where
c <t, cop > —t. Assume ¢/t = sinipy, —co/t = sintpy for some 1,12 € [0,7/2), BT B, = coseps for

13 = [0, 7]. With some calculations, we can show that

h = Pr(U; > —sin, cos(13)U; + sin(y3)Us > sin1)g)

- %[W — tpy — max (12,3 — )]+ + %Wl iy — o — 7]
_ %[W — o — max(th2, Y3 — 1))y, Wy > 1,

%min(ﬂ — 2tpg, max(m — g — 3 4+ P1, 291 — 2402)), P2 < 1.

Hence, h is increasing as a function of BTﬁg. This completes the proof.

E.2.  Proof of theorem 3
We assume ||34|l2 = 1. In the proof of theorem 1, we have shown that for any /5 satisfying ||3|]2 = 1,

PCD,(B,¢) is a function of f(B73,,c,co), which increases as a function of 373, for fixed ¢ and co.
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Hence, we obtain
mglnPCDg(ﬂ(]\g),c) = n/gnf(/Bg/B(]‘OJ)?ca CO) = f(ngnﬁglg(]w())a ¢, CO)'

Since min, ﬂgﬁé‘g) > 0, it suffices to show that for any fixed 0 < p < 1 and fixed ¢p, the maximum

of f(p,c,cp) as a function of ¢ is achieved at ¢ = ¢/p. Similar to (4) and (7), we can show
flp.eco) = 2Pr(XW > —, XWp + X\ /T - p2 > —¢p) = Pr(XY > —¢) + g(cp),
for some function ¢(-). Hence, it suffices to show that the maximum of
2Pr(XM > —¢, XWp+ XxO/1—p2 > —¢) —Pr(XV > —¢)

as a function of ¢ is achieved at ¢ = ¢y/p.

Due to the decomposition in (8), we have
Pr(XM > —¢, XWp 4+ X@ /1 - p2 > —¢p) = Pr(XV > —¢)
= E {2I(tU1 > —c, tU1p + tUs\/1 — p? > —co) — I(tU7 > —c)} = E{h(t,p,c,co)|T =t} .

It suffices to show that the maximum of h is achieved at ¢ = ¢g/p for fixed t > 0, p and cy.

Note that
h(t, p,c,co) = 2BI(tUy > —c, tUp + tUs\/1 — p2 > —co) — EI(tU; > —c).
When t =0,
h=2I(c<0,c0 <0)—1I(c<0).

Therefore, the maximum of A is achieved for any ¢ such that sgn(c) = sgn(cp), where sgn stands for
the sign function with sgn(cg) =1 for all ¢y > 0 and sgn(cg) = —1 for all ¢y < 0. Since 0 < p < 1, we
have sgn(co/p) = sgn(cp). This verifies that c¢/p is the maximizer of h when ¢ = 0.

When t > 0, note that h(t, p,c,co) = g(p, ¢/t,co/t) where

glp,c*,cl) = E{QI(U1 > Uip+Us/1—p2 > —ct) — I(Uy > —c*)}.

As a result, we only need to show that the maximum of g is achieved at ¢* = ¢j/p for fixed ¢fj and p.

Assume p = cos(1) for some 97 € (0,7/2). We focus on the case where ¢ = — cos(1)2) for some
g € (0,7). When |cf| > 1, the assertion that ¢* is the maximizer can be easily proven. With some
calculation, function g is equal to

0, < -1,
g(p’ 0*7 CS) — [min(w1+¢27¢3)—max(¢1—¢27—w3)}++[¢1+¢2+¢3—2ﬂ+—1/)37 x COS(wg), Py € (07 71‘),

™

2pg fm — 1, c>1.
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Consider separately the cases where cos(12)/ cos(¢1) > 1, cos(¢2)/ cos(¢1) < 1, and | cos(e)2)/ cos()1)| <
1. We show that ¢ is maximized at ¢* = ¢}; = —cos(¢2)/ cos(t1) in all these three cases. The proof

is thus completed.

Case 1: cos(1p2)/ cos(11) > 1. In this case, ¢}, < —1. Since ¢ € (0,7/2), this means 1y € (0,7/2)

and hence
2
9(p,c*,cp) = % —1<0=g(p,cu,cp), Vet > 1.
Thus, it suffices to show that g < 0 for ¢* = —cos(¢3) for some 3 € (0,7). When cos(2) >

cos(11), we have ¥; > 19 and hence
max (1 — Yo, —h3) = Y1 — Y2 > 0.
Besides, since 11,12 € (0,7/2), ¢35 € (0,7), we have 1)1 + 12 + 13 < 27 and hence

(1 + Y2 + 3 — 27]4 = 0.

Therefore, when ¢* = — cos(¢3),
g = % ([min(y1 + 92, ¢3) — max(P1 — Y2, —h3)|+ + 1 + Y2 + b3 — 27| — 4f3)
< (min(v o, Ul — ) = (s — ) = 0.

This shows that g is maximized at ¢* = ¢}, when cos(¢2)/ cos(11) > 1.

Case 2: cos(12)/cos(i1) < —1. In this case, we have cos(y2) + cos()1) < 0, and hence ¢}, =
—cos(12)/ cos(1p1) > 1. Besides,

cos(m — 1hg) = — cos(1h2) > cos(¢1). (12)
Equation (12) implies 11 + ¥9 > 7 and hence 219/ — 1 > 0. Thus,
g(p707\/1768) >0:9(P70*a03)’ Vet < -1 (13)

It suffices to show g(p, c¢*, ) < 2¢p2/m — 1 for ¢* = — cos(v3) for some 3. Since Y1 + g > m > 13,
1 € (0,7/2), we obtain 19 € (w/2,7) and 19 — 11 > 0. Therefore,

([3 — Y1 + Yoly + [t1 + 2 + 93 — 27| 4 — 93)

3=

g(p7 - COS(¢3)a - COS(%)) <

(¢3*¢1+¢2*¢3+[¢1+¢2+¢3*2W]+):%(¢2*¢1+[¢1+¢2+¢3*2W]+)

<

N

(¢2—¢1+[¢1+¢2—W]+)Z%(¢2—¢1+¢1+¢2—W)=%¢2—1-

This together with (13) suggest that g is maximized at ¢* = ¢}, when cos(¢»)/ cos(11) < —1.
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Case 3: Finally we show that g is maximized at ¢* = ¢}, when |cos(12)/cos(¢1)| < 1. Since

1 € (0,7/2), this suggests 11 < 1o < m — 1. Hence, we have ¢1 + 12 + 3 < m + 1p3 < 27 and

(Y1 + 2 + 13 — 2m]4 = 0. (14)

We assume cos(1p2)/ cos(p1) = cos()g) for some 1pg € [0, 7]. We aim to show that ¢ is maximized at

c* = — cos(v3) for g = 1.
For any m > 13 > 1, we have cos(13) < cos(tpg) and hence cos(3) cos(¢1) < cos(ep2). This

implies

cos(¥1 + 13) = cos()1) cos(hg) — sin(e)1) sin(g) < cos(12),

which further yields
Y1+ 3 > 1o, Vg = o.

By (14) and (15), we have for any 13 > 1)y,

9(p, — cos(t3), — cos(¢2)) = % ([min(y1 + ¥2,3) — max(¢r — tha, —¥3)]4 — ¢3) (16)
L ([min(n + ) — 1 ) —5) <+ (W + v — ] — ) = (W),

7T ™

where the last equality is due to that 1o > 11 and hence 3 + 1o — 11 > 0.
For any 0 < 13 < 1), we have cos(13) > cos(1g) and hence cos(13) cos(1) > cos(1p2). Therefore,

we obtain

cos(thg — 1) = cos(11) cos(yz) + sin(ePq) sin(ypz) > cos()2).

This suggests

V142 =3, ViP3 < to. (17)
By (14) and (17), we have for any 13 < 1y,
1
9(p, = cos(¥3), — cos(¥2)) < — ({3 — max(y1 — vz, —¥3)l+ — ¥3) (18)
< l[% — 1+ o]t — l¢3 = l(iﬂz —11).
T ™ T
Set 3 = 1pg. It follows from (15), (17) and 12 > 1) that
(min(¢1 + 92, ¢0) — max (Y1 — Y2, —vo)]+ — o) (19)

g(p> - COS(wO)v - COS(¢2)) =
([Yo + b2 — 1]y —2bo) = %(wz — 1),

A=

= %([@Z}O_@Z}l + o]y — o) =
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Combining (19) together with (16) and (18), we have shown that

9(p, = cos(to), — cos(¢2)) = g(p, *; — cos(iha)), (20)

for all |¢*| < 1.
By (19), since ¥ > 11 and g = 0 when ¢* < —1, (20) also holds for all ¢* < —1.

It remains to show (20) holds for all ¢* > 1. Since 1y < 7w — 1)1, when ¢* > 1, we have

_ 2 thetm—d  _da—tn

oo T s
It follows from (19) that g(p, — cos(¢g), — cos(v2)) > g(p, c*, —cos(¢p2)) when ¢* > 1. The proof is
then completed.

E.3. Proof of theorem 4
For any g, define p, = ﬁgT/B . It follows from lemma F.1 and the decomposition in (8) that

VD, (8,¢) = B(XT 8, + c)[(XTB+ ¢ > 0) = E{ 13,2 (XVp, + X\ /1= p2) 1(XD > —¢)
+ oPr(XW > —¢) = B{||B,ll2 XV p (XY > —e)} 4 coPr(XY > —¢) = E(BT 8, XY + ) I(XV > —¢).

Using similar arguments in the proof of theorem 3, it suffices to show for any ¢ > 0, and fixed c¢g, the

function
E{(tXM 4 ¢)I(XM > —¢)}

is maximized at ¢ = ¢o/t. However, this is immediate to see since tx + ¢ > 0 when = > —c¢g/t, and

tx + ¢y < 0 when = < ¢p/t. The proof is thus completed.

E.4. Proof of Lemma 3

Define F(3) = min, 87 3,. We present the following lemmas before proving lemma 3.

LEMMA E.1. For any vector By, consider the set
K(Bo)={g=1,...,G: F(Bo) = B By}
Then there exists an € > 0 such that for all |8 — Poll2 < €, we have

_ : T
F(B) = duin B By.

LEMMA E.2. If BM is the solution of max| g|,—1 F'(B), then there exists a unique nonempty subset
Ko C[1,...,G] such that

M e Ex, (B).



Supplement to “Maximin-Projection Learning” 23

Besides, we have

: T aM T oM
jrg;pgﬁjﬁ > B, B, Vk € Ko.

LEMMA E.3. Define Fk,(8) = mingek, 8784 for any Ko C [1,...,G]. Then for any unit vector
B € C(Bk,), and any unit vector By such that ||Bo — B2 < €, there exists another unit length vector
B’ € C(Bk,) such that |5" — B2 < e, and Fk,(8") > Fk,(bo)-

Proof of lemma 3: Since Gy > 0, we have Bé‘(/i[) = BM where M = arg max| g|,<1 £'(3). We first

show there exists a subset Ko C [1,...,G] such that
pY = E, (B), (21)
with
min BrBM > plsM, ke K. (22)

Lemma E.2 asserts that there exists a unique set Ko C [1,...,G] such that M € Eg,(B) and (22)
holds. For this Ko, it follows from lemma 2 that E, (B) exists.
Define

g AMesEB)
{1+ 62 + 205 By, (B)}1/2
Note that [|[31]|2 = 1.
By lemma E.1, for sufficiently small § > 0, we have
T oM Trx
+ 66, Ex (B

P(5*) = min — L7 0P (B)
9€Ko {1 + §2 4 20M EKO(B)}l/2

It follows by the definition of E} (B) and " € Eg,(B) that ﬁgT/BM < ﬁgE}(O(B), for all g € K.
Therefore, we have

T oM
geKo {1+52+25ﬁM E;(O(B)}l/Q

(23)
Assume M £ Ef (B), we have (8M)TE% (B) < 1 and hence RHS of (23) is strictly larger than

g€Ko (1+ 02 + 20)1/2 _52}2)595 = FE. (24)

Combining (24) together with (23), we obtain F(8T) > F(8M). However, this contradicts the
definition of M. Assertion (21) hence follows.

We next show if there exists some non-empty set Ko C [1,...,G], By = E}, (B) such that

AT T
min B; Bo > B, Bo, Vk € Ko, (25)
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and the column vectors in B, are linearly independent, then a sufficient and necessary condition to
establish 6(1‘04) = By is that
el (Bk,Bx,) 'e>0, Vk=1,...,|Ko, (26)
where ey, is a basis vector with the kth component equal to 1, and other elements 0.
Note that B(MO) = argmax|g|,<1 ing ﬁTﬂg. The above optimization problem is concave. As a
result, in order to show 6(1‘04) = By, it suffices to show that for any S within the e-neighborhood of Sy,

we have F'(8) < F(fy). By (25) and lemma E.1, for sufficiently small £ and (3 such that ||5— 5yl < e,

we have

F(B) = min 573,

geKo

To show [y is the maximizer of F'(3), by lemma E.3, we only need to show

Fg,(B) < Fk,(Bo), VB e C(Br,), [IB—"0Foll2<e, [Bll2=1.

Since vectors in By, are linearly independent, for any § € C(Bg,) such that [|5]l2 = 1, there

exists a unique w such that
B = BKOW,

with wTB}";OB K,w = 1. Similarly we present 3y = Bg,wo with wg B}";OB K,wo = 1. Since the column
vectors in B, are linearly independent, we have e € C (B};O). By definition, we have 5y = E}; (B).

It follows from lemma 2 that
Bo = {7 (BE Br,) '} "V/*By,(BE, Br,) e,

and hence

wo = {e!(BE Br,) e} VY*(BE Br,) e (27)

For any w such that wTB};O By,w =1, it follows from Cauchy-Swartz inequality that
wTB[T(OBKOwo < wng(OBKOwO,
or equivalently,
(w— wo)TB};OBKowo <0. (28)

We first show the sufficiency of (26). Assume for now (26) holds. It follows from (27) that all
elements in wy are nonnegative. By (28), this means for any § = Bg,w with ||3||2 = 1, at least one

element in the vector B;‘QO Bk, (w — wp) must be smaller than or equal to 0. Note that

B, (B — Bo) = Bk, Bi,(w — wp). (29)



Supplement to “Maximin-Projection Learning” 25
It follows from (28) and (29) that for any 8 € C(Bg,) with unit Ly norm, there exists some k €
[1,...,|Ko|] such that

et BL. (B — Bo) < 0. (30)

Since [y is the optimal equicorrelated point, e{B%O Po remains the same for all k = 1,...,|Ky|.

This together with (30) suggests that for any § € C(Bg,) with unit Ly norm,
mkin 65317;06 < mkin e%B};OBO,

or equivalently, F'(8) < F(By). The sufficiency thus follows.
To show the necessity, note that when at least one element in wg is negative, we can construct
some vector b with all positive elements such that wg b < 0. Define
ng b
bT(BI@OBKO)*lb

§=— (Bk,Br,)'b.

With some calculation, we have

| Bk, (6 +wo)||3 = 6" Bf, Bx,6 + 26" B, Bi,wo + wp, B, Bre,wo

_ dwgb)?  Alwgd)?
- V(B Br,)7'0 b(BE Bk,)tb

This implies the vector 8 = B};ﬂ(é + wp) satisfies the Lo unit norm constraint. Besides,

2wi'b

B — By) = BE B0 = — .
Ko(ﬁ BO) KoPKo bT(BIj;(]BKO)_lb

(31)
Since all elements in b are positive and wl b < 0, each element in RHS of (31) is positive. This
implies
mkin eCkFBIZ;O,B > mkin e%B}QOBO,

and hence F(5) > F(fy). Therefore, we've reached a contradiction. The necessity thus follows.

E.5. Proof of theorem 5
Assume Fy < 0, we have for any 3 # 0,

min 573, < winls" 8, + 57 (3, - 5,)) < min 673, + max 8215, Byl

BBy
18]l
It follows from Condition (C1) that

< Bl (mn 57 a3, = ull ) =112 (Fo+ mcl1, - )

5 F
Pr <m§x 139 = Byll2 > —20) — 0.
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Hence, we have

Pr supminﬁTBg <0) —1.
840 9

This implies with probability tending to 1, 0 is the estimated maximin coefficients. Therefore, BM is
consistent when Fy < 0.

Consider the case when Fj > 0. Define

BM = [e"(BK,Br,)'e]*Bx, (B, Br,) e

In order to show with probability tending to 1, ﬁM = BM , it follows from lemma 3 that we need
to show with probability tending to 1, (i) the matrix B[T(UBKO is invertible, (ii) minge s BQTBM >
maxgex, BgBM , and (iii) each element in the vector (élT(O Bg,) ‘e is nonnegative. We now break the
proof into five steps. In the first step, we show M is consistent with respect to ,B(MO) and establish its
convergence rate. In the next three steps, we verify (i)-(iii), respectively. Convergence rate of BM g
the same as that of BM . Finally, we show the convergence rate of ¢".

Step 1: Note that M — B(MO) is equal to
" (Bk,Bx,) el "'/*Bi,(Bf, Bk,) ‘e — [¢" (B, Bk,) " 'e] "/*B, (B, Bx,) ‘e

We decompose it as I1 + I + I3 where

L= (" (B, Br,) el ~ [7(BE, B,) 'l %) Bie, (BE, Br,) e,
Iy = ["(BE,Br,) el ™ (B, (BE, Bi,) e = Bie,(BE, Bi,)"e)
Iy = [¢"(Bk,Br,) "'l ™2 Bu, ((BE,Bi,) ™ — (BE, Brc,) ) e

Recall that 75" the convergence rate of maxge, 185 — Byll2- In the following, we argue each ||I]|2

is of the order = Op(n(ll)), for j = 1,2,3. We first prove ||1]]2 = Op(rgl)). Before that, we show
IBE, Bre, = Bit, Brc,ll2 = 0p(r5) 5 0. (32)

Note that the matrix B};DBKO - B};OBKO is symmetric, it follows from lemma F.3 that the LHS in

32) is smaller than ||BT BK — BT Bk ||so. Besides, we have
Ky 0 Ky 0

| Bl Bre, — BE, Bi |lso < max > 375 — 57| (33)
I jer,
AT A T3 T3 T
< max >° (1878 - 8781+ 1873 - 573
J€EKo
<

max (135112 + 114,112 mKX; (118 = Ballz + 1135 = Billz) = OriD).

0
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Therefore, (32) is proven. Note that

Amin(B};’ BKO) = min aTE[T( BKOa > min aTB%; Bg,a — max |aT(3}; BKU — B[T< Bg,)a|
’ flall2=1 0 lall2=1 0 llall2=1 ’ 0
> Amin(Bk,Bx,) — | Bk, Bx, — Bk, B, |l2. (34)

Since the matrix B, is of full column rank, the matrix BIT(U Bg, is invertible and hence )\min(B};O Bg,) >

0. This together with (34) implies that with probability tending to 1,

1im inf Amin (B Be,) > 0 and Amay ((BﬁOBKO)—l) = 0(1). (35)
Similarly we can show that with probability tending to 1,

lim inf Amin ((B};OBKO)—l) > 0 and Apay(BE, Br,) = O(1). (36)

It follows from Cauchy-Schwarz inequality that

HBKO(BIIQUBKO)ile“Q < \/HBKO(B};OBKO)_leng = \/”e’g)‘max ((B?(OBKO)_1>‘ (37)

This together with (35) suggests ||BK0(BIT<OBKO)_1€||2 = O(1), with probability tending to 1.
Observe that ||I;]|2 is bounded from above by

[e" (B, Br,)"'e] /% = [e" (B, Br,) el V||| Bi, (B, Br,) el
To show || I1]|2 = Op(rﬁbl)), it suffices to show
[ (B, Br,) el 712 — [T (B, Bi,) e 712 = Op(r)). (38)
LHS of (38) can be represented as
(7 BE Br) ) (T (BE Br) )

(e (Bg, Bk,) " te) 12 (eT(BIYQOEKO)*16> i

(39)

Note that
e (BE, Bre,) e = lel3hmin ((BE, Bic,) ™) -

This together with (36) implies that with probability tending to 1, the denominator in (39) is uniformly
greater than some constant ¢ > 0, for sufficiently large n.
Hence it suffices to show

(7 (BE, Bre)e) " — (7 (BE, i) o) =

Op(ri)). (40)
It follows from (36) that

PO 1/2
lim inf { (GT(BIT(OBKo)ﬂe) + (eT(B};OBKO)fle) 1/2} >0,
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with probability tending to 1.
Note that

( (BE Bi,) le—e (B};OBKO)—le)

— {(eT(B£OBK0)1@>1/2 B (eT(B£03K0)16)1/2} {(6T(BIT(OBKO)16>1/2 . (eT(B};OBKO)le)lm} |

It suffices to show
(e (BE, Br,) e — ¢ (BE, Bi,)'¢) = 0,(rV).
Note that the absolute value of the LHS of (41) can be bounded from above by
lell31l(Bi, Br.) ™" = (Bi, Br) o
It follows from (32) and (35) that

I(Bk, Br) ™ — (B, Br,) Iz

< |(BE,Bx,) 2l Bk, Br, — Bk, B, |l2(BE, Bi,) 2 = Op(r{)).

Combining (42) together with (43), we obtain (41). Hence, we have shown ||I1|2 = Op(rgl)).

Next we show |12z = Op(rg)). Note that ||I2]|2 can be bounded from above by
" (Bk, Br,) " e]V?|| B, — Br, ll2l|(B, Br,) " 'ell2.
Similar to (37), we can show H(E}QOBKO)_leHQ = Op(1). By (44), it suffices to show
1BK, — B ll2 = Op(rY).

However, it is immediate to see (45) holds by definitions of By, and By, .

As for ||I3]|2, we can similarly show

sz < [e" (B, Br,) "¢l /2 Bro l2ll (B, Br,) ™" = (B, Bi,) |z ell2-

(42)

(43)

(44)

(45)

(46)

By (32), the RHS of (46) is Op(ry ¢ )) This implies ||13]]2 = Op( 7(11)). Under Condition (C1), we have

(1)

rn’ — 0. Therefore, M is consistent.

Step 2: Since B, is of full column rank, the matrix B};O B, is invertible and hence )\mm(B};O Bg,) >

0. It follows from (32) and (34) that the matrix B};OB K, is invertible with probability tending to 1.

Step 3: In Step 1, we have shown SM is consistent to B(MO). Under Condition (C1), all estimators

are consistent. Hence, we have

min ,BTBM >  min ﬁT,B

geK§ geK§

= nel}pcﬁ By +0p( )

B ll2018™ = Bloyll2 =

— Byll2
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Similarly, we can show

néaX,BTﬁ <maxﬁﬂ +0p(1). (48)
g

It follows from lemma 3 that max,e, BgB(MO) < minge g BgTﬁ(MO). This together with (47) and (48)
suggests that with probability tending to 1, we have

. AT AM T 3M
. 4
J2in BB > s 4)
Step 4: It follows from lemma 3 that each element in the vector wy = (w(()l),.. wO‘KOD) =

(Bf,Bk,) ‘e is nonnegative. Under Condition (C2), it is further assumed that all elements in
(k)

wo are nonzero. Hence, we obtain wy”’ >0, Vk =1,...,|Ky].

Besides, it follows from (43) that
AT B N ~1, P
I(Bk, Br,)~'e = (Bi,Br,)~"ellz < v/ Kolll(Bk, Bx,) ™" — (B, Br,) ' ll2 = 0.

This implies that with probability tending to 1, all the elements in the vector (BT BKO) e are
nonnegative. Combining results shown in Steps 2 and 3, it follows from lemma 3 that BM s the

solution to the problem (12).

Step 5: As for ¢M, we have

min, ,BgTﬁM — min, BgﬂM

GoGo

- =12 -
By the definition of Ky, we have min, BQTB(MO) = mingek, Bgﬁ(MO) When BM BM, it follows from
(49) that min, B;FBM = mingeg, BQTBAM. Hence, we obtain
jmin 57 3) — min 5 5| = |min 5 ) — min 5] 5|
< max | Byllo |6 = B ll2 + IIBMllz max |3y — Bgllz,

with probability tending to 1. Convergence rate of ¢ thus follows from those of M and Bg, g € K.

This completes the proof.

E.6. Proof of theorem 6
In the proof of theorem 5, we have shown that
M = [e"(Bk,Bk,) el /* Bk, (Bk,Bx,) e,

Bly = le"(BE,Bx,) ‘el "* Bk, (B, Bk,) .
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Define ty = B[T(O(B[T(0 Bg,) e and let e, be the base vector with the gth coordinate as 1. For any
matrix ¥, denote by N (¥) the projection matrix I — ¥(¥7¥)*¥T, For any vector a € R?, it follows

from the proof for theorem 5 that aT(BM — M) can be decomposed as 1, + 12 + 13 where

m = (1" (BE,Bi) ™2 ~ flolly ) a"to,
1 > > s — p—
2 = HtOHQCLT <BK0(BI€OBK0) 1_BK0<BIZ;OBK0) l) e,
mo= (1" (BE,Bi) ™2~ t51%) (" B (B, Br,) e — a"to)

for any a € R® with ||al|2 = 1.

—-1/2

Condition (C3) implies all Bg, g € Ko and ¢y are m consistent. Using a second order Taylor

expansion, we can show

L (TN (B (B — Bty — aTogt By — 5,)) + 0p(1),
and

mm:“fz T(BEL. Bi)ega"tolT (By — By) + 0p(1),

where vy = B, (BT Bk,) ey, €4 is the basis vector with the gth coordinate equal to 1.
Using similar arguments in the proof of theorem 5, we can show

—-1/2 —1/2

(671;(317;01%&)_1%) — (efc(Bk,Bk,) 'ex) = o0p(1),

and hence
Vini = op()vim (a7 Bie, (BE, Bi,) ' = a"to) = 0,(1)0,(1) = 0,(1).

Combining these results together, we have that /m(3M — 6(]\6[)) is equivalent to

Jm

lItoll2

> {vfeN(Bk,) — e vaN(to)} (By — By). (50)

geKo

Under Condition (C3), the set of vectors {\/E(BQ — By),9 € Ko} are asymptotically normally dis-
tributed. The asymptotic normality of BM thus follows.

Similarly, we can show /m(eM — c%[)) is equivalent to

> Vm(By = Bg) by + thov/m(éo — co), (51)
geKo
for some constant g and vectors 14,9 € Ko. Hence, Vm(eM — Cé\(/)[)) is also asymptotically normal.
To derive the form of VM let ¥ = (31,...,9¢) and Vg, be the matrix formed by columns in

U. Similarly define U = (vy,...,vg) and Ug,. For any m x n matrix A, denoted by vec(A) the
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mn x 1 vector obtained by stacking the columns of the matrix A on top of one another. For any

vector a = (aq, ... ,ap)T and matrix A, define the Kronecker product
a® A= (a1 AT, ..., apAT)T.
Under Condition (C3), denoted by ® the asymptotic covariance matrix of

Vm(éo — ¢))
Vm(vee(Br,) — vec(Bg,))

7 =

Besides, let
1
J = Mol [(Uk,e) ® {N(Bx,)" = N(to)"}] ,

and Ug = (19, vecT (¥))T. Using some algebra, it follows from (50) and (51) that

M M \IJTZ
VM = lim cov ‘/m(f ‘) | _ limcov [ ° = (W, J) @ (W, J).
" Vm(BM = B{) " JrZ

The proof is hence completed.

F. Technical lemmas and definitions

LEMMA F.1. For any vectors a,b subject to the constraint ||al|2 = ||b||2 = 1, there exits an orthog-

onal matrix T' such that
Fa=(1,0,...,007, Tb=(c,V/1—-¢2,0,...,0)T,
where ¢ = a’'b.

Proof: Denote I'1 to an arbitrary orthogonal matrix whose first column vector is equal to a.

Assume Ty = (a,us, ..., u,)T where u; is orthogonal to a for i > 2, we have
a=(1,0,...,007, T1b=(c,d")7,

where d = (ulb, ... ,ugb). Now define I's to be any (p — 1) X (p — 1) orthogonal matrix with the first

column equal to d/||d||2 and

the assertion follows by setting I' = I'oI';.

DEFINITION F.1. A s x 1 random vector X is said to have a spherically symmetric distribution if

for every s x s orthogonal matriz I', I' X 4x.
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LeEMMA F.2 (FANG ET AL. (1990)). Assume s x 1 random vector X = (X1,...,Xs)T is spheri-

cally distributed, then

X1 d TdUl
XQ TdUQ

where Uy and Us uniformly distributed on the Lo ball: u3 +u3 = 1. r g | X2 >0 and d > 0 are

random variables distributed independently of U1 and Us,.
LEMMA F.3. For any symmetric matriz A, we have ||All2 < || A]|co-

Proof: ||Al|2 < ||All1]|Allco- Since A is symmetric, ||Al|; = ||Als and the assertion follows.

Proof of lemma 4: Let pM = arg maxg. | g||,—1 Ming ﬁTﬁg, for any (8 subject to the constraint

IB]|]2 = 1, there exists some j such that
T . aT aM
B; B < s By B
This together with the assumption on h suggests for any ¢, we have

h(B, Bj,t) < minh(BY, By, ),
which further implies
ER(8, 3, T) < Emin h(BM, By, T) < min En(BM, By, T).
The proof is hence completed.

Proof for lemma E.1, E.2 and E.3: Proofs for these lemmas are similar to those of lemma 2-4 in
the paper Avi-Itzhak et al. (1995). We note that although in Avi-Itzhak et al. (1995), they require
|Bgll2 = 1 for all g, and 34’s to be linearly independent, these assumptions can be relaxed. We provide

proofs for these lemmas below.

Proof for lemma E.1: 1f K(By) = [1,...,G], the proof becomes trivial. Otherwise, denoted by
S(Bo) =[1,...,G] — K(Bo), we have S(fp) # 0. Let
Ag= min Blp, —F .
0= nin Bo By — F(Bo)
By definition, we have Ay > 0.
Let My = maxy—1,..q ||Bgll2, € = Ao/(3Mp). For any /3 such that || — Fol|2 < €, we have

Ag

|5Tﬁg - ﬁoTﬁg| < Mpe = ER
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and hence
A
T8y~ 52 < 678, < BB+ 2 (52)
The first inequality in (52) implies
. T . T
min B By > ml(g By Bg — Do/3, (53)

9€5(Bo) 9€5(Bo)

while the second inequality in (52) suggests

T T
max < max + Ag/3 = Fy + Ay/3. 54
geK(BO)/B By geK(ﬁo)lBO By + Ao/ 0+ Ao/ (54)

Combining (53) with (54), we obtain
Ao Ay . T
<Fy+ — < Ag+— < :
QGHIl(a(Jgo B /Bg 0 3 genél(rﬁlo BO Bg 0 3 gégl(go)ﬁ /89

The proof is hence completed.

Proof for lemma E.2: Define Kg by
Ko={ge{l,...,G}: Bl M = mjinﬂjTBM}
Obviously, Kj is unique. Besides, by definition, we have
T oM T oM ~
~ K.
grg;pgﬁgﬁ > B; B, Vi€ Ko
Moreover, since B]TﬁM are the same for all j € Ky, we have M € Eg, (B).

Proof for lemma E.3: Any unit length vector Sy can be represented as

3 B+4
0= o A
18+ 6l
for some vector §. We further decompose § = & + d2 where §; € C(Bk,) and 6] By, = 0. Let
g = B+
18+ dull2”

Since B € C(Bg,), we have 8 € C(Bg,) and 61 3 = 0.
Observe that

, 1+ 876
18 =813 = 2-28"8' =
? T AT 0B £ 2,
1+ 3876
IO gy — I3 < 2

V1411613 + 2674,
This implies 8 also lies within the e-neighborhood of 3. Besides, for any g € Ky,

By (B+38) BB+
VI+0B+28T6 ~ \/1+ [[01]3 + 2678
Therefore, we obtain Fk,(8') > Fk,(B0). The proof is hence completed.

By Bo = =BL8.
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