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In this supplement, we present a detailed discussion on the equicorrelated points set and the opti-

mal equicorrelated point, additional numerical studies and proofs of theorem 1, theorem 3, theorem

4, lemma 3, theorem 5, and theorem 6.

B. More on the equicorrelated points set and the optimal equicorrelated point

For an arbitrary s × G matrix Ψ, let Ψg be its gth column vector. The equicorrelated points set of

{Ψ1, . . . ,ΨG} is defined by

E(Ψ) =
{
t ∈ Rs|tTΨj = tTΨi, ∀1 ≤ i, j ≤ G

}
.

To better understand E(Ψ), in Figure 1, we take s = G = 2, plot Ψ1 and Ψ2 as well as the triangle

formed by these two vectors. We further plot the height of the triangle Ψ0. Note that ΨT
1 Ψ0 = ΨT

2 Ψ0.

In this small example, we have

E(Ψ) = {a0Ψ0 : a0 ∈ R} .

Further assume ∥Ψ1∥2 = ∥Ψ2∥2. Then E(Ψ) consists of vectors that are parallel to the bisector of

the angle formed by Ψ1 and Ψ2.

More generally, for any t ∈ E(Ψ), it follows from the definition of E(Ψ) that there exists some

ρ ∈ R,

ΨT t = ρe, (1)

where

e = (1, 1, . . . , 1︸ ︷︷ ︸
G

).
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Fig. 1: Plots of Ψ1 and Ψ2 (denoted by the square symbol), and Ψ0 (denoted by the circle symbol)

Obviously, we have 0s ∈ E(Ψ) where 0s refers to an s-dimensional zero vector. Besides, for any

t1, t2 ∈ E(Ψ), we have

ΨT t1 = ρ1e and ΨT t2 = ρ2e,

for some constants ρ1, ρ2 > 0. Therefore,

ΨT (a1t1 + a2t2) = (a1ρ1 + a2ρ2)e,

for any a1, a2 ∈ R. This implies a1t1 + a2t2 ∈ E(Ψ). Hence, E(Ψ) forms a linear subspace in Rs.

Moreover, for any t ∈ E(Ψ), we can represented t by t = t0 + t∗ for t0 ∈ C(Ψ) and t∗ ∈ N(ΨT )

where C(Ψ) denotes the column space of Ψ and N(ΨT ) denotes the null space of ΨT . By definition,

we have t0 = Ψω0 for some ω0 ∈ Rs. It follows from (1) that

ΨTΨω0 = ρe.

Assume e ∈ C(ΨT ). Using some standard arguments in linear least square regressions, we have

E(Ψ) =
{
ρΨ[ΨTΨ]+e+ t∗ : ρ ∈ R, t∗ ∈ N(ΨT )

}
, (2)

where [ΨTΨ]+ is the Moore-Penrose inverse of ΨTΨ.

The optimal equicorrelated point is defined by

E⋆(Ψ) = arg max
t∈E(Ψ)
∥t∥2=1

{
tTΨg, ∀1 ≤ g ≤ G

}
.

By (2), finding E⋆(Ψ) is equivalent to the following problem

argmax
ρ,t∗

ρ2eT [ΨTΨ]+e, s.t.∥t∗∥22 + ρ2eT [ΨTΨ]+e = 1. (3)

When eT [ΨTΨ]+e > 0, (3) is maximized at t∗ = 0, ρ = (eT [ΨTΨ]+e)−1/2. Therefore,

E⋆(Ψ) = (eT [ΨTΨ]+e)−1/2Ψ[ΨTΨ]+e.
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This proves lemma 2.

In the following, we show eT [ΨTΨ]+e > 0. When e ∈ C(ΨT ), there exists some vector ω∗ such

that e = ΨTω∗. Hence, it is equivalent to show ωT∗ Ψ[ΨTΨ]+ΨTω∗ > 0. Note that Ψ[ΨTΨ]+ΨT is the

projection matrix of Ψ. If ωT∗ Ψ[ΨTΨ]+ΨTω∗ = 0, then ω∗ belongs to the null space of ΨT . However,

this implies ΨTω∗ = 0G and we’ve reached a contradiction. Therefore, we have eT [ΨTΨ]+e > 0.

C. Additional simulation results

C.1. Homogeneous individualized treatment effects

As suggested by one of the referee, we further examine our methods under settings where some of

the βg’s are the same. As in Section 5, responses were generated from

Ygj = h(Xgj) +AgjX
T
gjβg + εgj ,

for j = 1, . . . , 200, g = 1, . . . , 4, Xgj = (X
(1)
gj , X

(2)
gj )

T iid∼ N(0, I2) and εgj
iid∼ N(0, 0.25). We consider

two scenarios. In the first scenario, we set β1 = β2 = (2, 0)T , and β3 = β4 = (0, 2)T . In the second

scenario, we set β1 = β2 = β3 = β4 = (2 cos(45◦), 2 sin(45◦))T . By definition, we have

βM(0) = arg max
β:∥β∥2≤1

min
g∈{1,2,3,4}

βTβg = {cos(45◦), sin(45◦)}T ,

and cM(0) = c0/(β
T
0 β

M
(0)) = 0.

We consider the same four settings as in Section 5. In Table 7, we report the biases and standard

deviations of β̂M and ĉM , based on 600 simulations. Confidence intervals are omitted since it remains

unknown whether our bootstrap procedure is consistent under settings where some of the βg’s are

the same. From Table 7, it is evident that β̂M and ĉM are consistent to βM(0) and cM(0) in both two

scenarios, respectively.

We further evaluate the PCD and the VD under the estimated maximin OTR d̂M (x) = I(xT β̂M >

−ĉM ) and compare them with those under the estimated pooled OTR d̂P (x) = I(xT β̂P > −ĉP ). The

PCD and the VD under the OTR obtained by random effects meta-analyses are very close to those

under the pooled OTR, and are hence omitted for brevity. Simulation results are summarized in

Table 8, 9, 10 and 11. In Scenario 1, the estimated maximin OTR performs uniformly better than

the estimated pooled OTR. The VD under d̂M are approximately half larger than those under d̂P .

In Scenario 2, since β′gs are the same, we can show that β̂P
P→ (2 cos(45◦), 2 sin(45◦))T and ĉP

P→ 0

when either the propensity score model or the baseline mode is correct. The VD under the estimated

maximin OTR are very similar to those under the estimated pooled OTR. Besides, they are very

close to
√

2/π ≈ 0.798, which corresponds to the VD under the groupwise OTR. The PCD under the

estimated maximin OTR are sightly lower than those under the estimated pooled OTR. Nonetheless,
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they are above 96% for all cases. This implies the estimated maximin OTR is consistent to the

groupwise OTR in a homogeneous setting.

Table 7: Biases, standard deviations (SD) of β̂M and ĉM

β̂M
1 β̂M

2 ĉM

Bias SD Bias SD Bias SD

Scenario 1

Setting 1 −0.001 0.022 4.0× 10−4 0.022 3.0× 10−4 0.025

Setting 2 −8.0× 10−4 0.043 −0.002 0.043 −0.001 0.048

Setting 3 −0.003 0.030 −0.002 0.029 0.001 0.037

Setting 4 −0.003 0.059 −0.002 0.059 −0.002 0.065

Scenario 2

Setting 1 −0.001 0.026 −1.0× 10−4 0.026 2.0× 10−4 0.018

Setting 2 −0.002 0.045 −4.0× 10−4 0.045 −0.001 0.034

Setting 3 −0.003 0.057 −0.002 0.057 −4.0× 10−4 0.026

Setting 4 −0.004 0.094 −0.009 0.095 −0.001 0.046

Table 8: VD results (with standard errors in parenthesis) for Scenario 1 under the maximin and pooled OTRs.

Testing group First group Second group Third group Fourth group

Setting 1
pooled 0.355(0.002) 0.355(0.002) 0.356(0.002) 0.357(0.002)

maximin 0.556(0.001) 0.554(0.001) 0.555(0.001) 0.554(0.001)

Setting 2
pooled 0.354(0.003) 0.355(0.003) 0.355(0.003) 0.355(0.003)

maximin 0.546(0.002) 0.547(0.002) 0.544(0.002) 0.545(0.002)

Setting 3
pooled 0.358(0.004) 0.355(0.003) 0.355(0.003) 0.355(0.004)

maximin 0.552(0.001) 0.550(0.001) 0.553(0.001) 0.550(0.001)

Setting 4
pooled 0.357(0.004) 0.355(0.004) 0.356(0.004) 0.353(0.004)

maximin 0.536(0.002) 0.539(0.002) 0.537(0.002) 0.536(0.002)

Table 9: PCD results (%, with standard errors in parenthesis) for Scenario 1 under the maximin and pooled

OTRs.
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Testing group First group Second group Third group Fourth group

Setting 1
pooled 64.7(0.1) 64.7(0.1) 64.8(0.1) 64.8(0.1)

maximin 74.6(<0.1) 74.5(<0.1) 74.5(<0.1) 74.5(<0.1)

Setting 2
pooled 64.7(0.1) 64.7(0.1) 64.7(0.1) 64.8(0.1)

maximin 74.1(0.1) 74.1(0.1) 74.0(0.1) 74.0(0.1)

Setting 3
pooled 64.9(0.2) 64.8(0.2) 64.8(0.2) 64.8(0.2)

maximin 74.4(0.1) 74.2(0.1) 74.4(0.1) 74.3(0.1)

Setting 4
pooled 65.0(0.2) 64.9(0.2) 64.9(0.2) 64.8(0.2)

maximin 73.6(0.1) 73.8(0.1) 73.6(0.1) 73.6(0.1)

Table 10: VD results (with standard errors in parenthesis) for Scenario 2 under the maximin and pooled

OTRs.

Testing group First group Second group Third group Fourth group

Setting 1
pooled 0.798(<0.001) 0.798(<0.001) 0.797(<0.001) 0.798(<0.001)

maximin 0.797(<0.001) 0.797(<0.001) 0.797(<0.001) 0.797(<0.001)

Setting 2
pooled 0.797(<0.001) 0.797(<0.001) 0.797(<0.001) 0.797(<0.001)

maximin 0.796(<0.001) 0.796(<0.001) 0.796(<0.001) 0.796(<0.001)

Setting 3
pooled 0.797(<0.001) 0.797(<0.001) 0.797(<0.001) 0.797(<0.001)

maximin 0.795(<0.001) 0.795(<0.001) 0.795(<0.001) 0.795(<0.001)

Setting 4
pooled 0.794(<0.001) 0.794(<0.001) 0.794(<0.001) 0.794(<0.001)

maximin 0.790(<0.001) 0.790(<0.001) 0.790(<0.001) 0.789(<0.001)
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Table 11: PCD results (%, with standard errors in parenthesis) for Scenario 2 under the maximin and pooled

OTRs.

Testing group First group Second group Third group Fourth group

Setting 1
pooled 99.1(<0.1) 99.1(<0.1) 99.1(<0.1) 99.1(<0.1)

maximin 98.8(<0.1) 98.8(<0.1) 98.8(<0.1) 98.8(<0.1)

Setting 2
pooled 98.6(<0.1) 98.5(<0.1) 98.5(<0.1) 98.5(<0.1)

maximin 98.0(<0.1) 97.9(<0.1) 98.0(<0.1) 98.0(<0.1)

Setting 3
pooled 98.3(<0.1) 98.3(<0.1) 98.4(<0.1) 98.3(<0.1)

maximin 97.7(0.1) 97.7(0.1) 97.7(0.1) 97.7(0.1)

Setting 4
pooled 97.4(0.1) 97.2(0.1) 97.3(0.1) 97.1(0.1)

maximin 96.1(0.1) 96.2(0.1) 96.2(0.1) 96.0(0.1)

C.2. Non-normal covariates

We further examine the robustness of our estimator with non-normal covariates. We consider the

same model as in Section 5,

Ygj = h(Xgj) +AgjX
T
gjβg + εgj ,

for j = 1, . . . , 200, g = 1, . . . , 4, where εgj
iid∼ N(0, 0.25). Covariates Xgj = (X

(1)
gj , X

(2)
gj )

T were

generated from the following distributions:

(i) X
(k)
gj

iid∼ t(4)/
√
2, for j = 1, . . . , 200, g = 1, . . . , 4, k = 1, 2, where t(k) stands for the Student’s

t-distribution with k degrees of freedoms.

(ii) X
(1)
gj

iid∼ 2Ber(0.5) − 1, X
(2)
gj

iid∼ N(0, 1), for j = 1, . . . , 200, g = 1, . . . , 4, where Ber(p) denotes the

Bernoulli random variable with success probability p. Besides, X
(1)
g1j1

and X
(2)
g2j2

are independent, for

any g1, g2, j1, j2.

(iii) X
(k)
1j

iid∼ N(0, 1), X
(k)
2j

iid∼ t(3)/
√
3, X

(k)
3j

iid∼ t(4)/
√
2, X

(k)
4j

iid∼ t(5)/
√

5/3, for j = 1, . . . , 200,

g = 1, . . . , 4, k = 1, 2. Besides, X1j1 , X2j2 , X3j3 and X4j4 are independent for any j1, j2, j3, j4.

Note that in (iii), the distributions of the covariates are allowed to vary across different groups. We

consider the same two scenarios for βg’s, and the same four settings for the propensity score models

and the baseline models as in Section 5. We conduct 600 simulation replications. In Table 12, 13 and

14, we report the biases and standard deviations of β̂M and ĉM , as well as the coverage probabilities

(CP) of 95% Wald-type confidence intervals for βM(0) and c
M
(0) when covariates are generated as in (i),

(ii) and (iii), respectively. The confidence intervals are calculated based on 600 bootstrap samples.

Findings are similar to those with normal covariates.
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Table 12: Biases, standard deviations (in parenthesis) of β̂M , ĉM and coverage probabilities (CP) of 95%

Wald-type confidence intervals for βM
(0), c

M
(0) when covariates are generated as in (i).

Scenario 1 β̂M
1 β̂M

2 ĉM CP for β̂M
1 CP for β̂M

2 CP for ĉM

Setting 1 -0.002(0.02) 0.001(0.019) -0.0004(0.026) 97.7% 97.7% 94.2%

Setting 2 -0.002(0.035) -0.0001(0.035) -0.002(0.044) 96.2% 96.2% 94.5%

Setting 3 -0.003(0.035) 0.001(0.035) -0.002(0.038) 95.2% 95.2% 94.3%

Setting 4 -0.003(0.06) -0.002(0.061) -0.006(0.071) 96.8% 96.8% 92.7%

Scenario 2 β̂M
1 β̂M

2 ĉM CP for β̂M
1 CP for β̂M

2 CP for ĉM

Setting 1 -0.001(0.027) -0.0003(0.027) -0.0004(0.025) 97.2% 97.2% 94.2%

Setting 2 0.002(0.044) -0.005(0.044) -0.002(0.041) 96.2% 96.2% 94.5%

Setting 3 -0.008(0.086) -0.003(0.085) -0.002(0.036) 95.0% 95.0% 94.2%

Setting 4 -0.027(0.133) 0.003(0.127) -0.005(0.065) 97.8% 97.8% 92.7%

Table 13: Biases, standard deviations (in parenthesis) of β̂M , ĉM and coverage probabilities (CP) of 95%

Wald-type confidence intervals for βM
(0), c

M
(0) when covariates are generated as in (ii).

Scenario 1 β̂M
1 β̂M

2 ĉM CP for β̂M
1 CP for β̂M

2 CP for ĉM

Setting 1 -0.0004(0.026) -0.001(0.026) -0.001(0.025) 96.7% 96.7% 93.8%

Setting 2 -0.00001(0.047) -0.003(0.046) -0.001(0.039) 94.8% 94.8% 97.3%

Setting 3 -0.001(0.032) -0.001(0.032) -0.0001(0.037) 94.7% 94.7% 94.8%

Setting 4 -0.003(0.055) -0.001(0.053) -0.023(0.046) 95.3% 95.3% 93.3%

Scenario 2 β̂M
1 β̂M

2 ĉM CP for β̂M
1 CP for β̂M

2 CP for ĉM

Setting 1 -0.001(0.032) -0.0002(0.032) -0.001(0.024) 96.8% 96.8% 93.8%

Setting 2 -0.0003(0.061) -0.005(0.062) -0.001(0.037) 98.0% 98.0% 97.3%

Setting 3 -0.007(0.086) -0.003(0.084) -0.00003(0.034) 93.8% 93.8% 94.8%

Setting 4 -0.007(0.118) -0.014(0.121) -0.021(0.043) 96.8% 96.8% 93.3%
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Table 14: Biases, standard deviations (in parenthesis) of β̂M , ĉM and coverage probabilities (CP) of 95%

Wald-type confidence intervals for βM
(0), c

M
(0) when covariates are generated as in (iii).

Scenario 1 β̂M
1 β̂M

2 ĉM CP for β̂M
1 CP for β̂M

2 CP for ĉM

Setting 1 0.0004(0.027) -0.001(0.027) 0.001(0.025) 97.5% 97.5% 95.0%

Setting 2 0.001(0.05) -0.005(0.05) 0.001(0.042) 97.0% 97.0% 94.0%

Setting 3 0.0002(0.038) -0.002(0.038) -0.001(0.034) 96.5% 96.5% 94.8%

Setting 4 -0.002(0.074) -0.006(0.076) -0.00005(0.051) 95.8% 95.8% 95.7%

Scenario 2 β̂M
1 β̂M

2 ĉM CP for β̂M
1 CP for β̂M

2 CP for ĉM

Setting 1 0.001(0.042) -0.003(0.042) 0.001(0.024) 97.3% 97.3% 95.0%

Setting 2 -0.006(0.084) -0.004(0.083) 0.001(0.041) 97.7% 97.7% 94.0%

Setting 3 -0.004(0.088) -0.007(0.088) -0.001(0.032) 96.5% 96.5% 94.8%

Setting 4 -0.020(0.137) -0.006(0.132) 0.0001(0.047) 98.0% 98.0% 95.7%

In Table 15-20, we present the VD under the estimated maximin OTR and the estimated pooled

OTR. The PCD results are reported in Table 23-28 in Section C.3. The VD and the PCD under the

OTR estimated by random effects meta-analyses are omitted, since they are very close to those under

the pooled OTR. It can be seen that in Scenario 1, the maximin OTR are uniformly better than the

pooled OTR over all groups. In Scenario 2, the VD under the maximin OTR are larger than those

under the pooled OTR when the first group is taken as the testing group. When other groups are

taken as the testing groups, the VD under the maximin and the pooled OTRs become comparable.

Table 15: The VD results (with standard errors in parenthesis) under the estimated maximin OTR and the

pooled OTR for Scenario 1 when covariates are generated as in (i).

Testing group First group Second group Third group Fourth group

Setting 1
pooled 0.410(0.002) 0.579(0.002) 0.598(0.002) 0.371(0.002)

maximin 0.465(0.001) 0.637(<0.001) 0.667(<0.001) 0.445(0.001)

Setting 2
pooled 0.409(0.002) 0.578(0.002) 0.595(0.002) 0.368(0.002)

maximin 0.464(0.002) 0.636(0.001) 0.664(0.001) 0.439(0.002)

Setting 3
pooled 0.409(0.002) 0.575(0.002) 0.598(0.002) 0.377(0.002)

maximin 0.464(0.001) 0.637(0.001) 0.665(0.001) 0.443(0.002)

Setting 4
pooled 0.406(0.003) 0.572(0.002) 0.595(0.002) 0.377(0.003)

maximin 0.456(0.003) 0.633(0.001) 0.659(0.001) 0.427(0.003)
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Table 16: The VD results (with standard errors in parenthesis) under the estimated maximin OTR and the

pooled OTR for Scenario 2 when covariates are generated as in (i).

Testing group First group Second group Third group Fourth group

Setting 1
pooled 0.752(<0.001) 0.551(<0.001) 0.798(<0.001) 0.704(<0.001)

maximin 0.782(<0.001) 0.545(<0.001) 0.798(<0.001) 0.709(<0.001)

Setting 2
pooled 0.751(<0.001) 0.551(<0.001) 0.797(<0.001) 0.703(<0.001)

maximin 0.779(0.001) 0.544(<0.001) 0.796(<0.001) 0.706(0.001)

Setting 3
pooled 0.751(0.001) 0.551(<0.001) 0.797(<0.001) 0.704(<0.001)

maximin 0.779(0.001) 0.545(<0.001) 0.795(0.001) 0.706(0.001)

Setting 4
pooled 0.748(0.001) 0.550(<0.001) 0.795(<0.001) 0.702(0.001)

maximin 0.767(0.002) 0.543(<0.001) 0.789(0.001) 0.698(0.001)

Table 17: The VD results (with standard errors in parenthesis) under the estimated maximin OTR and the

pooled OTR for Scenario 1 when covariates are generated as in (ii).

Testing group First group Second group Third group Fourth group

Setting 1
pooled 0.447(0.002) 0.657(0.002) 0.523(0.002) 0.132(0.002)

maximin 0.559(0.002) 0.785(0.001) 0.686(0.001) 0.284(0.002)

Setting 2
pooled 0.447(0.002) 0.654(0.002) 0.525(0.003) 0.137(0.003)

maximin 0.558(0.003) 0.781(0.002) 0.685(0.002) 0.286(0.004)

Setting 3
pooled 0.450(0.003) 0.658(0.003) 0.525(0.004) 0.139(0.004)

maximin 0.558(0.002) 0.785(0.001) 0.685(0.001) 0.282(0.003)

Setting 4
pooled 0.451(0.004) 0.658(0.004) 0.525(0.004) 0.146(0.005)

maximin 0.554(0.004) 0.778(0.002) 0.684(0.002) 0.287(0.004)
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Table 18: The VD results (with standard errors in parenthesis) under the estimated maximin OTR and the

pooled OTR for Scenario 2 when covariates are generated as in (ii).

Testing group First group Second group Third group Fourth group

Setting 1
pooled 0.846(0.001) 0.617(<0.001) 0.869(<0.001) 0.745(<0.001)

maximin 0.915(0.001) 0.604(<0.001) 0.870(0.001) 0.758(0.001)

Setting 2
pooled 0.846(0.001) 0.616(<0.001) 0.868(0.001) 0.744(0.001)

maximin 0.913(0.001) 0.604(0.001) 0.864(0.001) 0.751(0.001)

Setting 3
pooled 0.845(0.001) 0.616(<0.001) 0.866(0.001) 0.741(0.001)

maximin 0.907(0.002) 0.606(<0.001) 0.862(0.001) 0.751(0.002)

Setting 4
pooled 0.844(0.002) 0.614(<0.001) 0.862(0.001) 0.737(0.002)

maximin 0.900(0.003) 0.606(0.001) 0.847(0.002) 0.735(0.003)

Table 19: The VD results (with standard errors in parenthesis) under the estimated maximin OTR and the

pooled OTR for Scenario 1 when covariates are generated as in (iii).

Testing group First group Second group Third group Fourth group

Setting 1
pooled 0.388(0.003) 0.537(0.001) 0.604(0.001) 0.378(0.002)

maximin 0.483(0.001) 0.584(<0.001) 0.667(<0.001) 0.453(0.001)

Setting 2
pooled 0.388(0.003) 0.536(0.001) 0.602(0.001) 0.377(0.002)

maximin 0.481(0.003) 0.583(0.001) 0.664(0.001) 0.445(0.002)

Setting 3
pooled 0.395(0.003) 0.537(0.002) 0.599(0.002) 0.371(0.002)

maximin 0.481(0.002) 0.584(0.001) 0.666(0.001) 0.450(0.001)

Setting 4
pooled 0.397(0.004) 0.535(0.002) 0.594(0.002) 0.366(0.003)

maximin 0.476(0.003) 0.581(0.001) 0.660(0.001) 0.435(0.003)
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Table 20: The VD results (with standard errors in parenthesis) under the estimated maximin OTR and the

pooled OTR for Scenario 2 when covariates are generated as in (iii).

Testing group First group Second group Third group Fourth group

Setting 1
pooled 0.801(<0.001) 0.506(<0.001) 0.798(<0.001) 0.724(<0.001)

maximin 0.845(0.001) 0.500(<0.001) 0.799(<0.001) 0.731(<0.001)

Setting 2
pooled 0.800(0.001) 0.505(<0.001) 0.797(<0.001) 0.724(<0.001)

maximin 0.838(0.001) 0.500(<0.001) 0.796(0.001) 0.728(0.001)

Setting 3
pooled 0.802(0.001) 0.505(<0.001) 0.797(<0.001) 0.723(<0.001)

maximin 0.840(0.001) 0.501(<0.001) 0.795(0.001) 0.727(0.001)

Setting 4
pooled 0.801(0.001) 0.504(<0.001) 0.795(<0.001) 0.721(0.001)

maximin 0.827(0.002) 0.499(<0.001) 0.788(0.001) 0.717(0.002)

C.3. Additional tables

Table 21: The PCD results (%, with standard errors in parenthesis) for Scenario 1 under the estimated

maximin OTR d̂M , the pooled OTR d̂P and the OTR estimated by random effects meta-analyses d̂R.

Testing group First group Second group Third group Fourth group

Setting 1

d̂P 67.1(0.1) 77.6(0.1) 79.2(0.1) 65.3(0.1)

d̂R 67.1(<0.1) 77.6(<0.1) 79.2(<0.1) 65.2(<0.1)

d̂M 70.9(0.1) 83.3(0.1) 86.1(0.1) 69.5(0.1)

Setting 2

d̂P 67.1(0.1) 77.6(0.1) 79.1(0.1) 65.2(0.1)

d̂R 67.0(<0.1) 77.6(<0.1) 79.2(<0.1) 65.2(<0.1)

d̂M 70.8(0.1) 83.3(0.1) 85.9(0.1) 69.3(0.1)

Setting 3

d̂P 67.1(0.1) 77.6(0.1) 79.2(0.1) 65.3(0.1)

d̂R 67.0(0.1) 77.5(0.1) 79.2(0.1) 65.2(0.1)

d̂M 70.8(0.1) 83.2(0.1) 86.2(0.1) 69.3(0.1)

Setting 4

d̂P 67.1(0.2) 77.6(0.2) 79.3(0.2) 65.3(0.2)

d̂R 67.1(0.1) 77.5(0.1) 79.2(0.1) 65.2(0.1)

d̂M 70.4(0.2) 83.2(0.1) 85.7(0.1) 68.7(0.2)
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Table 22: The PCD results (%, with standard errors in parenthesis) for Scenario 2 under the estimated

maximin OTR d̂M , the pooled OTR d̂P and the OTR estimated by random effects meta-analyses d̂R.

Testing group First group Second group Third group Fourth group

Setting 1

d̂P 86.8(<0.1) 98.2(<0.1) 94.6(<0.1) 90.4(<0.1)

d̂R 86.8(<0.1) 98.4(<0.1) 94.6(<0.1) 90.4(<0.1)

d̂M 91.7(0.1) 94.6(0.1) 94.9(0.1) 91.6(0.1)

Setting 2

d̂P 86.8(0.1) 97.9(<0.1) 94.5(0.1) 90.3(0.1)

d̂R 86.8(<0.1) 98.3(<0.1) 94.6(<0.1) 90.4(<0.1)

d̂M 91.5(0.1) 94.6(0.1) 94.8(0.1) 91.5(0.1)

Setting 3

d̂P 86.8(0.1) 97.8(<0.1) 94.6(0.1) 90.4(0.1)

d̂R 86.7(0.1) 97.8(<0.1) 94.6(0.1) 90.4(0.1)

d̂M 91.5(0.1) 94.8(0.1) 94.5(0.1) 91.6(0.1)

Setting 4

d̂P 86.7(0.1) 96.9(0.1) 94.3(0.1) 90.3(0.1)

d̂R 87.0(0.1) 97.8(<0.1) 94.4(0.1) 90.2(0.1)

d̂M 90.3(0.2) 94.7(0.1) 93.7(0.2) 91.0(0.2)

Table 23: The PCD results (%, with standard errors in parenthesis) under the estimated maximin OTR and

the pooled OTR for Scenario 1 when covariates are generated as in (i).

Testing group First group Second group Third group Fourth group

Setting 1
pooled 68.0(0.1) 79.4(0.1) 80.8(0.1) 65.9(0.1)

maximin 71.3(0.1) 84.3(<0.1) 87.2(<0.1) 70.0(0.1)

Setting 2
pooled 68.0(0.1) 79.4(0.1) 80.6(0.1) 65.7(0.1)

maximin 71.3(0.1) 84.3(0.1) 87.0(0.1) 69.7(0.1)

Setting 3
pooled 68.0(0.1) 79.2(0.1) 80.9(0.1) 66.2(0.1)

maximin 71.3(0.1) 84.4(0.1) 87.0(0.1) 70.0(0.1)

Setting 4
pooled 67.9(0.1) 79.0(0.2) 80.7(0.2) 66.3(0.2)

maximin 70.9(0.2) 84.2(0.1) 86.6(0.1) 69.2(0.2)
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Table 24: The PCD results (%, with standard errors in parenthesis) under the estimated maximin OTR and

the pooled OTR for Scenario 2 when covariates are generated as in (i).

Testing group First group Second group Third group Fourth group

Setting 1
pooled 88.3(<0.1) 98.3(<0.1) 95.1(<0.1) 91.3(<0.1)

maximin 92.6(0.1) 95.2(0.1) 95.3(0.1) 92.3(0.1)

Setting 2
pooled 88.3(0.1) 97.8(<0.1) 94.9(0.1) 91.1(0.1)

maximin 92.4(0.1) 95.0(0.1) 94.9(0.1) 92.0(0.1)

Setting 3
pooled 88.2(0.1) 97.8(<0.1) 95.0(0.1) 91.3(0.1)

maximin 92.5(0.1) 95.4(0.1) 94.9(0.1) 92.1(0.1)

Setting 4
pooled 88.1(0.1) 97.1(0.1) 94.6(0.1) 91.3(0.1)

maximin 91.4(0.2) 94.9(0.1) 94(0.2) 91.4(0.2)

Table 25: The PCD results (%, with standard errors in parenthesis) under the estimated maximin OTR and

the pooled OTR for Scenario 1 when covariates are generated as in (ii).

Testing group First group Second group Third group Fourth group

Setting 1
pooled 72.3(0.1) 75.7(0.1) 70.4(0.1) 53.0(0.1)

maximin 77.9(0.1) 84.2(0.1) 80.0(0.1) 57.6(0.1)

Setting 2
pooled 72.3(0.1) 75.5(0.1) 70.6(0.1) 53.2(0.1)

maximin 77.9(0.2) 84.0(0.1) 80.1(0.1) 57.9(0.1)

Setting 3
pooled 72.5(0.2) 75.9(0.2) 70.9(0.2) 53.3(0.1)

maximin 77.9(0.1) 84.2(0.1) 80.0(0.1) 57.6(0.1)

Setting 4
pooled 72.6(0.2) 75.9(0.3) 71.2(0.2) 53.7(0.1)

maximin 77.7(0.2) 83.8(0.2) 80.2(0.2) 58.0(0.2)



14 C. Shi, R. Song, W. Lu and B. Fu

Table 26: The PCD results (%, with standard errors in parenthesis) under the estimated maximin OTR and

the pooled OTR for Scenario 2 when covariates are generated as in (ii).

Testing group First group Second group Third group Fourth group

Setting 1
pooled 81.0(<0.1) 97.6(<0.1) 92.0(0.1) 85.8(0.1)

maximin 88.3(0.1) 92.1(0.1) 92.5(0.1) 87.7(0.1)

Setting 2
pooled 81.0(0.1) 97.2(0.1) 92.1(0.1) 85.9(0.1)

maximin 88.4(0.2) 92.5(0.2) 92.2(0.2) 87.5(0.2)

Setting 3
pooled 80.9(0.1) 97.0(0.1) 92.1(0.1) 85.8(0.1)

maximin 88.0(0.2) 92.9(0.1) 92.3(0.2) 87.9(0.2)

Setting 4
pooled 81.0(0.2) 96.2(0.1) 92.0(0.2) 85.7(0.2)

maximin 87.8(0.3) 93.2(0.2) 91.2(0.3) 87.3(0.3)

Table 27: The PCD results (%, with standard errors in parenthesis) under the estimated maximin OTR and

the pooled OTR for Scenario 1 when covariates are generated as in (iii).

Testing group First group Second group Third group Fourth group

Setting 1
pooled 66.2(0.1) 80.0(0.1) 81.2(0.1) 65.9(0.1)

maximin 70.7(0.1) 84.7(<0.1) 87.2(<0.1) 69.9(0.1)

pooled 66.3(0.1) 79.9(0.1) 81.1(0.1) 65.9(0.1)

maximin 70.7(0.1) 84.7(0.1) 86.9(0.1) 69.5(0.1)

pooled 66.6(0.1) 80.1(0.1) 80.9(0.1) 65.6(0.1)

maximin 70.6(0.1) 84.7(0.1) 87.2(0.1) 69.8(0.1)

pooled 66.7(0.2) 80.1(0.2) 80.7(0.2) 65.4(0.2)

maximin 70.5(0.2) 84.6(0.1) 86.7(0.1) 69.1(0.2)
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Table 28: The PCD results (%, with standard errors in parenthesis) under the estimated maximin OTR and

the pooled OTR for Scenario 2 when covariates are generated as in (iii).

Testing group First group Second group Third group Fourth group

Setting 1
pooled 86.6(<0.1) 98.3(<0.1) 95.1(<0.1) 91.1(<0.1)

maximin 91.5(0.1) 95.3(0.1) 95.5(0.1) 92.4(0.1)

Setting 2
pooled 86.6(0.1) 97.8(<0.1) 94.9(0.1) 91.1(0.1)

maximin 91.1(0.2) 95.2(0.1) 95.0(0.1) 92.2(0.1)

Setting 3
pooled 86.8(0.1) 97.8(<0.1) 95.0(0.1) 91.0(0.1)

maximin 91.4(0.2) 95.5(0.1) 95.0(0.1) 92.2(0.1)

Setting 4
pooled 86.9(0.1) 97.0(0.1) 94.6(0.1) 90.9(0.1)

maximin 90.4(0.2) 95.1(0.1) 93.8(0.2) 91.3(0.2)

D. The schizophrenia data

Tarrier et al. (2004) conducted a multi-center, randomized controlled trial with 18-month follow-up ,

to examine the effects of cognitive-behavioral therapy (CBT) and supportive counselling (SC) on the

outcomes of an early episode of schizophrenia. Patients were randomized to three treatment options,

including the cognitive-behavioural therapy plus treatment as usual (CBT), supportive counselling

plus treatment as usual (SC) and treatment as usual (TAU). The primary outcome, the Positive and

Negative Syndromes Schedule (PANSS, Kay et al., 1987), was measured at baseline and the end of

follow-up. Patients’ durations of untreated psychosis, years of education and social functioning scores

were also recorded at baseline.

As previous studies showed that both psychological treatment groups (CBT and SC) had a superior

treatment effect compared to the control group (TAU), we focus on comparing two treatment arms:

CBT (A = 1) and SC (A = 0) to determine individual OTRs. The reduction of PANSS score

at the 18th month’s visit is set as a patient’s response Y . We consider two covariates: PANSS

score at baseline (X(1)) and log duration of untreated psychosis (X(2)). Over 400 patients were

initially enrolled in 3 treatment centres. Among them, only 165 finished the follow-up study and

had completed records of the final response and baseline information. 85 of them received CBT or

SC. As in Tarrier (2004), we classify 85 patients into 3 groups according to their treatment centres

(Manchester, Liverpool and North Nottinghamshire). We first standardize the two covariates such

that their sampling covariance matrix equals the identity matrix within each group and then jointly

estimate c0, βg1, βg2 by the A-learning estimating equations as discussed previously. Estimators for

βg1 and βg2 are given in Table 29.
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Table 29: Estimators of groupwise OTR (standard errors in paranthesis) for the CBT study.

Group 1 Group 2 Group 3

β̂g1 1.35(10.21) 1.17(11.52) −20.71(13.27)

β̂g2 7.87(10.39) −10.56(8.84) 3.45(9.14)

Differences of βgi between different groups are not statistically significant. The large standard

errors are due to the small sample size of each group. However, some of the estimated coefficients β̂gi’s

among different groups are not even sign consistent, indicating potential existence of heterogeneity

in optimal treatment regimes across different groups.

We adopt the leave-one-group-out cross validation procedure as done in the previous example. We

report the estimated maximin OTR d̂M , the estimated pooled OTR d̂P , the OTR obtained based on

random effects models d̂R, as well as the corresponding estimated value functions in Table 30. All

three OTRs have similar value functions for Groups 1 and 2. However, for Group 3, value function

under the maximin OTR is much higher than those under other OTRs.

Table 30: d̂M , d̂P , d̂R and their estimated value functions.

Testing group Group 1 Group 2 Group 3

d̂M d̂P d̂R d̂M d̂P d̂R d̂M d̂P d̂R

ĉ 0.33 −1.13 −1.25 4.25 4.52 3.26 2.72 1.83 1.05

β̂1 0.11 −0.45 −2.79 1.00 −2.42 −2.89 1.00 0.04 0.11

β̂2 −0.99 −0.45 −3.15 −0.07 −3.23 −5.06 −0.01 3.86 4.62

ÊY ⋆
g (d) 26.25 25.66 25.32 29.92 30.81 32.04 24.01 16.29 14.36

E. Proofs

E.1. Proof of theorem 1

We use the same notations in the proof of theorem 2. To prove theorem 1, we will show that for

any fixed c, function PCDg(β, c) can be presented as Eψ(βTβg, T ) for some random variable T and

function ψ(·, ·). In addition, ψ(·, t) is monotone increasing for fixed t. Then the assertion of theorem

1 follows by an application of lemma 4.

Without loss of generality, assume ∥βg∥2 = 1 for all g. Recall that

PCDg(β, c) = 1− E|I(XT
g β > −c)− I(XT

g βg > −c0)| = 1− E|I(XT
g β > −c)− I(XT

g βg > −c0)|2

= 1− Pr(XT
g β > −c)− Pr(XT

g βg > −c0) + 2Pr(XT
g β > −c,XT

g βg > −c0). (4)

Similar to the proof of theorem 2, we can show Pr(XT
g β > −c) is constant as a function of {β ∈ Rs :
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∥β∥2 = 1}. Similarly, under the condition that ∥β1∥2 = · · · = ∥βG∥2, we can show Pr(XT
g βg > −c0)’s

are the same for all g. Combining these with (4), we obtain

PCDg(β, c) = 2Pr(XTβ > −c,XTβg > −c0) + ξ(c), (5)

for some function ξ independent of β. Recall βM(1) = argminβ PCDg(β, c). By (5), we have

βM(1) = argmaxmin
g

Pr(XTβ > −c,XTβg > −c0).

Therefore, it suffices to show for all β subject to the constraint ∥β∥2 = 1,

min
g

Pr(XTβ > −c,XTβg > −c0) ≤ min
g

Pr(XTβM > −c,XTβg > −c0). (6)

It follows from lemma F.1 that for all g, there exists an orthogonal matrix Γg such that

Γgβ = (1, 0, . . . , 0)T , Γgβg = (βTβg,
√

1− (βTβg)2, 0, . . . , 0)
T .

This implies

Pr(XTβ > −c,XTβg > −c0) = Pr(XTΓTg Γgβ > −c,XTΓTg Γgβg > −c0) (7)

= Pr(XTΓgβ > −c,XTΓgβg > −c0) = Pr
(
X(1) > −c,X(1)βTg β +X(2)

√
1− (βTg β)

2 > −c0
)
,

where the second equality is due to the fact that X is spherically distributed (see Definition F.1), and

that X(1) and X(2) are the first two components of the random vector X. It follows from theorem

2.6 in Fang et al. (1990) that

(X(1), X(2))
d
= rd(U1, U2), (8)

with r = ∥X∥2, d ∼ B(1, p/2 − 1), U1 and U2 uniformly distributed on the surface u21 + u22 = 1,

where B(p, q) stands for the Beta distribution with parameters p, q. The random variables r, d are

independent of U1 and U2. Set T = rd. Combining this with (7) gives

Pr(XTβ > −c,XTβg > −c0) = Pr

{
TU1 > −c,

(
βTβgU1 +

√
1− (βTβg)2U2

)
T > −c0

}
. (9)

For fixed T = t, the right-hand side of (9) is a function of βTβg only. Moreover, it can be further

represented as

E[h(βTβg, t)|T = t] ≡ E

[
Pr

{
tU1 > −c,

(
βTβgU1 +

√
1− (βTβg)2U2

)
t > −c0

}
|T = t

]
,

by the independence between T and U1, U2. By lemma 4, it suffices to show that h(·, t) is mono-

tonically increasing as a function of βTβg for all t. When t = 0, this becomes trivial. Assume t > 0

and consider, separately, the cases where {c ≤ 0, c0 ≤ 0}, {c > 0, c0 ≤ 0}, {c ≤ 0, c0 > 0} and
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{c > 0, c0 > 0}. We only show h is monotonically increasing as a function of βTβg when c ≤ 0, c0 ≤ 0

and c > 0, c0 ≤ 0. In other two cases, the assertion can be established using similar arguments.

Case 1: c ≤ 0, c0 ≤ 0. When either of c or c0 is smaller than or equal to −t, h = 0. It suffices

to consider when −c/t = sinψ1, −c0/t = sinψ2 for ψ1, ψ2 ∈ [0, π/2). Write βTβg = cos(ψ3) for

ψ3 ∈ [0, π]. We now argue h is decreasing as ψ3 increases. Recall

h = Pr(U1 > sinψ1, cos(ψ3)U1 + sin(ψ3)U2 > sinψ2). (10)

Note that U1 and U2 can be presented as U1 = sinΘ and U2 = cosΘ for some random variable Θ

uniformly distributed on [0, 2π]. With some calculation, RHS of (10) is equal to

Pr(sinΘ > sinψ1, sin(Θ + ψ3) > sinψ2) (11)

= Pr(ψ1 < Θ < π − ψ1, ψ2 − ψ3 < Θ < π − ψ2 − ψ3)

=
1

2π
[min(π − ψ1, π − ψ2 − ψ3)−max(ψ1, ψ2 − ψ3)]+

=


1

2π
[π − ψ2 − ψ3 −max(ψ1, ψ2 − ψ3)]+, ψ2 > ψ1,

1

2π
[min(π − ψ1, π − ψ2 − ψ3)− ψ1]+, ψ2 ≤ ψ1,

where [a]+
∆
= max(a, 0) for any real number a. Combining (10) with (11), we can see function h

decreases as ψ3 increases.

Case 2: c > 0, c0 ≤ 0. When c0 ≤ −t, h = 0. When c ≥ t,

h = Pr

(
U1β

Tβg + U2

√
1− (βTβg)2 ≥ −c0/t

)
= Pr(U1 > −c0/t),

which is a constant and does not change with βTβg. Hence, it suffices to consider cases where

c < t, c0 > −t. Assume c/t = sinψ1, −c0/t = sinψ2 for some ψ1, ψ2 ∈ [0, π/2), βTβg = cosψ3 for

ψ3 = [0, π]. With some calculations, we can show that

h = Pr(U1 > − sinψ1, cos(ψ3)U1 + sin(ψ3)U2 > sinψ2)

=
1

2π
[π − ψ2 −max(ψ2, ψ3 − ψ1)]+ +

1

2π
[ψ1 + ψ3 − ψ2 − π]+

=


1

2π
[π − ψ2 −max(ψ2, ψ3 − ψ1)]+, ψ2 > ψ1,

1

2π
min(π − 2ψ2,max(π − ψ2 − ψ3 + ψ1, 2ψ1 − 2ψ2)), ψ2 ≤ ψ1.

Hence, h is increasing as a function of βTβg. This completes the proof.

E.2. Proof of theorem 3

We assume ∥βg∥2 = 1. In the proof of theorem 1, we have shown that for any β satisfying ∥β∥2 = 1,

PCDg(β, c) is a function of f(βTβg, c, c0), which increases as a function of βTβg for fixed c and c0.
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Hence, we obtain

min
g

PCDg(β
M
(0), c) = min

g
f(βTg β

M
(0), c, c0) = f(min

g
βTg β

M
(0), c, c0).

Since ming β
T
g β

M
(0) > 0, it suffices to show that for any fixed 0 < ρ ≤ 1 and fixed c0, the maximum

of f(ρ, c, c0) as a function of c is achieved at c = c0/ρ. Similar to (4) and (7), we can show

f(ρ, c, c0) = 2Pr(X(1) > −c,X(1)ρ+X(2)
√

1− ρ2 > −c0)− Pr(X(1) > −c) + q(c0),

for some function q(·). Hence, it suffices to show that the maximum of

2Pr(X(1) > −c,X(1)ρ+X(2)
√

1− ρ2 > −c0)− Pr(X(1) > −c)

as a function of c is achieved at c = c0/ρ.

Due to the decomposition in (8), we have

2Pr(X(1) > −c,X(1)ρ+X(2)
√

1− ρ2 > −c0)− Pr(X(1) > −c)

= E
{
2I(tU1 > −c, tU1ρ+ tU2

√
1− ρ2 > −c0)− I(tU1 > −c)

}
∆
= E {h(t, ρ, c, c0)|T = t} .

It suffices to show that the maximum of h is achieved at c = c0/ρ for fixed t ≥ 0, ρ and c0.

Note that

h(t, ρ, c, c0) = 2EI(tU1 > −c, tU1ρ+ tU2

√
1− ρ2 > −c0)− EI(tU1 > −c).

When t = 0,

h = 2I(c < 0, c0 < 0)− I(c < 0).

Therefore, the maximum of h is achieved for any c such that sgn(c) = sgn(c0), where sgn stands for

the sign function with sgn(c0) = 1 for all c0 ≥ 0 and sgn(c0) = −1 for all c0 < 0. Since 0 < ρ ≤ 1, we

have sgn(c0/ρ) = sgn(c0). This verifies that c0/ρ is the maximizer of h when t = 0.

When t > 0, note that h(t, ρ, c, c0) = g(ρ, c/t, c0/t) where

g(ρ, c∗, c∗0) = E
{
2I(U1 > −c∗, U1ρ+ U2

√
1− ρ2 > −c∗0)− I(U1 > −c∗)

}
.

As a result, we only need to show that the maximum of g is achieved at c∗ = c∗0/ρ for fixed c∗0 and ρ.

Assume ρ = cos(ψ1) for some ψ1 ∈ (0, π/2). We focus on the case where c∗0 = − cos(ψ2) for some

ψ2 ∈ (0, π). When |c∗0| ≥ 1, the assertion that c∗ is the maximizer can be easily proven. With some

calculation, function g is equal to

g(ρ, c∗, c∗0) =


0, c∗ ≤ −1,

[min(ψ1+ψ2,ψ3)−max(ψ1−ψ2,−ψ3)]++[ψ1+ψ2+ψ3−2π]+−ψ3

π , c∗ = − cos(ψ3), ψ3 ∈ (0, π),

2ψ2/π − 1, c∗ ≥ 1.
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Consider separately the cases where cos(ψ2)/ cos(ψ1) > 1, cos(ψ2)/ cos(ψ1) < 1, and | cos(ψ2)/ cos(ψ1)| ≤

1. We show that g is maximized at c∗ = c∗M = − cos(ψ2)/ cos(ψ1) in all these three cases. The proof

is thus completed.

Case 1 : cos(ψ2)/ cos(ψ1) > 1. In this case, c∗M ≤ −1. Since ψ1 ∈ (0, π/2), this means ψ2 ∈ (0, π/2)

and hence

g(ρ, c∗, c∗0) =
2ψ2

π
− 1 < 0 = g(ρ, c∗M , c

∗
0), ∀c∗ ≥ 1.

Thus, it suffices to show that g ≤ 0 for c∗ = − cos(ψ3) for some ψ3 ∈ (0, π). When cos(ψ2) >

cos(ψ1), we have ψ1 > ψ2 and hence

max(ψ1 − ψ2,−ψ3) = ψ1 − ψ2 > 0.

Besides, since ψ1, ψ2 ∈ (0, π/2), ψ3 ∈ (0, π), we have ψ1 + ψ2 + ψ3 ≤ 2π and hence

[ψ1 + ψ2 + ψ3 − 2π]+ = 0.

Therefore, when c∗ = − cos(ψ3),

g =
1

π
([min(ψ1 + ψ2, ψ3)−max(ψ1 − ψ2,−ψ3)]+ + [ψ1 + ψ2 + ψ3 − 2π]+ − ψ3)

≤ 1

π
([min(ψ1 + ψ2, ψ3)]+ − ψ3) =

1

π
(ψ3 − ψ3) = 0.

This shows that g is maximized at c∗ = c∗M when cos(ψ2)/ cos(ψ1) > 1.

Case 2 : cos(ψ2)/ cos(ψ1) < −1. In this case, we have cos(ψ2) + cos(ψ1) < 0, and hence c∗M =

− cos(ψ2)/ cos(ψ1) > 1. Besides,

cos(π − ψ2) = − cos(ψ2) > cos(ψ1). (12)

Equation (12) implies ψ1 + ψ2 > π and hence 2ψ2/π − 1 > 0. Thus,

g(ρ, c∗M , c
∗
0) > 0 = g(ρ, c∗, c∗0), ∀c∗ ≤ −1. (13)

It suffices to show g(ρ, c∗, c∗0) ≤ 2ψ2/π − 1 for c∗ = − cos(ψ3) for some ψ3. Since ψ1 + ψ2 > π ≥ ψ3,

ψ1 ∈ (0, π/2), we obtain ψ2 ∈ (π/2, π) and ψ2 − ψ1 > 0. Therefore,

g(ρ,− cos(ψ3),− cos(ψ2)) ≤
1

π
([ψ3 − ψ1 + ψ2]+ + [ψ1 + ψ2 + ψ3 − 2π]+ − ψ3)

=
1

π
(ψ3 − ψ1 + ψ2 − ψ3 + [ψ1 + ψ2 + ψ3 − 2π]+) =

1

π
(ψ2 − ψ1 + [ψ1 + ψ2 + ψ3 − 2π]+)

≤ 1

π
(ψ2 − ψ1 + [ψ1 + ψ2 − π]+) =

1

π
(ψ2 − ψ1 + ψ1 + ψ2 − π) =

2

π
ψ2 − 1.

This together with (13) suggest that g is maximized at c∗ = c∗M , when cos(ψ2)/ cos(ψ1) < −1.
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Case 3 : Finally we show that g is maximized at c∗ = c∗M when | cos(ψ2)/ cos(ψ1)| ≤ 1. Since

ψ1 ∈ (0, π/2), this suggests ψ1 ≤ ψ2 ≤ π − ψ1. Hence, we have ψ1 + ψ2 + ψ3 ≤ π + ψ3 ≤ 2π and

[ψ1 + ψ2 + ψ3 − 2π]+ = 0. (14)

We assume cos(ψ2)/ cos(ψ1) = cos(ψ0) for some ψ0 ∈ [0, π]. We aim to show that g is maximized at

c∗ = − cos(ψ3) for ψ3 = ψ0.

For any π > ψ3 ≥ ψ0, we have cos(ψ3) ≤ cos(ψ0) and hence cos(ψ3) cos(ψ1) ≤ cos(ψ2). This

implies

cos(ψ1 + ψ3) = cos(ψ1) cos(ψ3)− sin(ψ1) sin(ψ3) ≤ cos(ψ2),

which further yields

ψ1 + ψ3 ≥ ψ2, ∀ψ3 ≥ ψ0. (15)

By (14) and (15), we have for any ψ3 ≥ ψ0,

g(ρ,− cos(ψ3),− cos(ψ2)) =
1

π
([min(ψ1 + ψ2, ψ3)−max(ψ1 − ψ2,−ψ3)]+ − ψ3) (16)

=
1

π
([min(ψ1 + ψ2, ψ3)− ψ1 + ψ2]+ − ψ3) ≤

1

π
([ψ3 + ψ2 − ψ1]+ − ψ3) =

1

π
(ψ2 − ψ1),

where the last equality is due to that ψ2 ≥ ψ1 and hence ψ3 + ψ2 − ψ1 ≥ 0.

For any 0 < ψ3 ≤ ψ0, we have cos(ψ3) ≥ cos(ψ0) and hence cos(ψ3) cos(ψ1) ≥ cos(ψ2). Therefore,

we obtain

cos(ψ3 − ψ1) = cos(ψ1) cos(ψ3) + sin(ψ1) sin(ψ3) ≥ cos(ψ2).

This suggests

ψ1 + ψ2 ≥ ψ3, ∀ψ3 ≤ ψ0. (17)

By (14) and (17), we have for any ψ3 ≤ ψ0,

g(ρ,− cos(ψ3),− cos(ψ2)) ≤
1

π
([ψ3 −max(ψ1 − ψ2,−ψ3)]+ − ψ3) (18)

≤ 1

π
[ψ3 − ψ1 + ψ2]+ − 1

π
ψ3 =

1

π
(ψ2 − ψ1).

Set ψ3 = ψ0. It follows from (15), (17) and ψ2 ≥ ψ1 that

g(ρ,− cos(ψ0),− cos(ψ2)) =
1

π
([min(ψ1 + ψ2, ψ0)−max(ψ1 − ψ2,−ψ0)]+ − ψ0) (19)

=
1

π
([ψ0 − ψ1 + ψ2]+ − ψ0) =

1

π
([ψ0 + ψ2 − ψ1]+ − ψ0) =

1

π
(ψ2 − ψ1).
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Combining (19) together with (16) and (18), we have shown that

g(ρ,− cos(ψ0),− cos(ψ2)) ≥ g(ρ, c∗,− cos(ψ2)), (20)

for all |c∗| ≤ 1.

By (19), since ψ2 ≥ ψ1 and g = 0 when c∗ ≤ −1, (20) also holds for all c∗ ≤ −1.

It remains to show (20) holds for all c∗ ≥ 1. Since ψ2 ≤ π − ψ1, when c
∗ ≥ 1, we have

g =
2ψ2

π
− 1 ≤ ψ2 + π − ψ1

π
− 1 ≤ ψ2 − ψ1

π
.

It follows from (19) that g(ρ,− cos(ψ0),− cos(ψ2)) ≥ g(ρ, c∗,− cos(ψ2)) when c∗ ≥ 1. The proof is

then completed.

E.3. Proof of theorem 4

For any g, define ρg = βTg β. It follows from lemma F.1 and the decomposition in (8) that

VDg(β, c) = E(XTβg + c0)I(X
Tβ + c > 0) = E

{
∥βg∥2

(
X(1)ρg +X(2)

√
1− ρ2g

)
I(X(1) > −c)

}
+ c0Pr(X

(1) > −c) = E{∥βg∥2X(1)ρgI(X
(1) > −c)}+ c0Pr(X

(1) > −c) = E(βTβgX
(1) + c0)I(X

(1) > −c).

Using similar arguments in the proof of theorem 3, it suffices to show for any t > 0, and fixed c0, the

function

E{(tX(1) + c0)I(X
(1) > −c)}

is maximized at c = c0/t. However, this is immediate to see since tx + c0 > 0 when x > −c0/t, and

tx+ c0 ≤ 0 when x ≤ c0/t. The proof is thus completed.

E.4. Proof of Lemma 3

Define F (β) = ming β
Tβg. We present the following lemmas before proving lemma 3.

Lemma E.1. For any vector β0, consider the set

K(β0) = {g = 1, . . . , G : F (β0) = βT0 βg}.

Then there exists an ε > 0 such that for all ∥β − β0∥2 ≤ ε, we have

F (β) = min
g∈K(β0)

βTβg.

Lemma E.2. If βM is the solution of max∥β∥2=1 F (β), then there exists a unique nonempty subset

K0 ⊆ [1, . . . , G] such that

βM ∈ EK0
(B).
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Besides, we have

min
j∈Kc

0

βTj β
M > βTk β

M , ∀k ∈ K0.

Lemma E.3. Define FK0
(β) = ming∈K0

βTβg for any K0 ⊆ [1, . . . , G]. Then for any unit vector

β ∈ C(BK0
), and any unit vector β0 such that ∥β0 − β∥2 < ε, there exists another unit length vector

β′ ∈ C(BK0
) such that ∥β′ − β∥2 < ε, and FK0

(β′) ≥ FK0
(β0).

Proof of lemma 3: Since G0 > 0, we have βM(0) = βM where βM = argmax∥β∥2≤1 F (β). We first

show there exists a subset K0 ⊆ [1, . . . , G] such that

βM = E⋆K0
(B), (21)

with

min
j∈Kc

0

βTj β
M > βTk β

M , ∀k ∈ K0. (22)

Lemma E.2 asserts that there exists a unique set K0 ⊆ [1, . . . , G] such that βM ∈ EK0
(B) and (22)

holds. For this K0, it follows from lemma 2 that E⋆K0
(B) exists.

Define

β+ =
βM + δE⋆K0

(B)

{1 + δ2 + 2δβMTE⋆K0
(B)}1/2

.

Note that ∥β+∥2 = 1.

By lemma E.1, for sufficiently small δ > 0, we have

F (β+) = min
g∈K0

βTg β
M + δβTg E

⋆
K0

(B)

{1 + δ2 + 2δβMTE⋆K0
(B)}1/2

.

It follows by the definition of E⋆K0
(B) and βM ∈ EK0

(B) that βTg β
M ≤ βTg E

⋆
K0

(B), for all g ∈ K0.

Therefore, we have

F (β+) ≥ min
g∈K0

(1 + δ)βTg β
M

{1 + δ2 + 2δβMTE⋆K0
(B)}1/2

. (23)

Assume βM ̸= E⋆K0
(B), we have (βM )TE⋆K0

(B) < 1 and hence RHS of (23) is strictly larger than

min
g∈K0

(1 + δ)βTg β
M

(1 + δ2 + 2δ)1/2
= min

g∈K0

βTg β
M = F (βM ). (24)

Combining (24) together with (23), we obtain F (β+) > F (βM ). However, this contradicts the

definition of βM . Assertion (21) hence follows.

We next show if there exists some non-empty set K0 ⊆ [1, . . . , G], β0 = E⋆K0
(B) such that

min
j∈Kc

0

βTj β0 > βTk β0, ∀k ∈ K0, (25)
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and the column vectors in BK0
are linearly independent, then a sufficient and necessary condition to

establish βM(0) = β0 is that

eTk (B
T
K0
BK0

)−1e ≥ 0, ∀k = 1, . . . , |K0|, (26)

where ek is a basis vector with the kth component equal to 1, and other elements 0.

Note that βM(0) = argmax∥β∥2≤1ming β
Tβg. The above optimization problem is concave. As a

result, in order to show βM(0) = β0, it suffices to show that for any β within the ε-neighborhood of β0,

we have F (β) ≤ F (β0). By (25) and lemma E.1, for sufficiently small ε and β such that ∥β−β0∥2 ≤ ε,

we have

F (β) = min
g∈K0

βTβg.

To show β0 is the maximizer of F (β), by lemma E.3, we only need to show

FK0
(β) ≤ FK0

(β0), ∀β ∈ C(BK0
), ∥β − β0∥2 ≤ ε, ∥β∥2 = 1.

Since vectors in BK0
are linearly independent, for any β ∈ C(BK0

) such that ∥β∥2 = 1, there

exists a unique ω such that

β = BK0
ω,

with ωTBT
K0
BK0

ω = 1. Similarly we present β0 = BK0
ω0 with ωT0 B

T
K0
BK0

ω0 = 1. Since the column

vectors in BK0
are linearly independent, we have e ∈ C(BT

K0
). By definition, we have β0 = E⋆K0

(B).

It follows from lemma 2 that

β0 = {eT (BT
K0
BK0

)−1e}−1/2BK0
(BT

K0
BK0

)−1e,

and hence

ω0 = {eT (BT
K0
BK0

)−1e}−1/2(BT
K0
BK0

)−1e. (27)

For any ω such that ωTBT
K0
BK0

ω = 1, it follows from Cauchy-Swartz inequality that

ωTBT
K0
BK0

ω0 ≤ ωT0 B
T
K0
BK0

ω0,

or equivalently,

(ω − ω0)
TBT

K0
BK0

ω0 ≤ 0. (28)

We first show the sufficiency of (26). Assume for now (26) holds. It follows from (27) that all

elements in ω0 are nonnegative. By (28), this means for any β = BK0
ω with ∥β∥2 = 1, at least one

element in the vector BT
K0
BK0

(ω − ω0) must be smaller than or equal to 0. Note that

BT
K0

(β − β0) = BT
K0
BK0

(ω − ω0). (29)
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It follows from (28) and (29) that for any β ∈ C(BK0
) with unit L2 norm, there exists some k ∈

[1, . . . , |K0|] such that

eTkB
T
K0

(β − β0) ≤ 0. (30)

Since β0 is the optimal equicorrelated point, eTkB
T
K0
β0 remains the same for all k = 1, . . . , |K0|.

This together with (30) suggests that for any β ∈ C(BK0
) with unit L2 norm,

min
k
eTkB

T
K0
β ≤ min

k
eTkB

T
K0
β0,

or equivalently, F (β) ≤ F (β0). The sufficiency thus follows.

To show the necessity, note that when at least one element in ω0 is negative, we can construct

some vector b with all positive elements such that ωT0 b < 0. Define

δ = − 2ωT0 b

bT (BT
K0
BK0

)−1b
(BT

K0
BK0

)−1b.

With some calculation, we have

∥BK0
(δ + ω0)∥22 = δTBT

K0
BK0

δ + 2δTBT
K0
BK0

ω0 + ωT0 B
T
K0
BK0

ω0

=
4(ωT0 b)

2

bT (BT
K0
BK0

)−1b
− 4(ωT0 b)

2

bT (BT
K0
BK0

)−1b
+ 1 = 1.

This implies the vector β = BT
K0

(δ + ω0) satisfies the L2 unit norm constraint. Besides,

BK0
(β − β0) = BT

K0
BK0

δ = − 2ωT0 b

bT (BT
K0
BK0

)−1b
b. (31)

Since all elements in b are positive and ωT0 b < 0, each element in RHS of (31) is positive. This

implies

min
k
eTkB

T
K0
β > min

k
eTkB

T
K0
β0,

and hence F (β) > F (β0). Therefore, we’ve reached a contradiction. The necessity thus follows.

E.5. Proof of theorem 5

Assume F0 < 0, we have for any β ̸= 0,

min
g
βT β̂g ≤ min

g
[βTβg + βT (β̂g − βg)] ≤ min

g
βTβg +max

g
∥β∥2∥β̂g − βg∥2

≤ ∥β∥2
(
min
g

βTβg
∥β∥2

+max
g

∥β̂g − βg∥2
)

= ∥β∥2
(
F0 +max

g
∥β̂g − βg∥2

)
.

It follows from Condition (C1) that

Pr

(
max
g

∥β̂g − βg∥2 > −F0

2

)
→ 0.
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Hence, we have

Pr

(
sup
β ̸=0

min
g
βT β̂g < 0

)
→ 1.

This implies with probability tending to 1, 0 is the estimated maximin coefficients. Therefore, β̂M is

consistent when F0 < 0.

Consider the case when F0 > 0. Define

β̃M = [eT (B̂T
K0
B̂K0

)−1e]−1/2B̂K0
(B̂T

K0
B̂K0

)−1e.

In order to show with probability tending to 1, β̂M = β̃M , it follows from lemma 3 that we need

to show with probability tending to 1, (i) the matrix B̂T
K0
B̂K0

is invertible, (ii) ming∈Kc
0
β̂Tg β̃

M >

maxg∈K0
β̂Tg β̃

M , and (iii) each element in the vector (B̂T
K0
B̂K0

)−1e is nonnegative. We now break the

proof into five steps. In the first step, we show β̃M is consistent with respect to βM(0) and establish its

convergence rate. In the next three steps, we verify (i)-(iii), respectively. Convergence rate of β̂M is

the same as that of β̃M . Finally, we show the convergence rate of ĉM .

Step 1: Note that β̃M − βM(0) is equal to

[eT (B̂T
K0
B̂K0

)−1e]−1/2B̂K0
(B̂T

K0
B̂K0

)−1e− [eT (BT
K0
BK0

)−1e]−1/2BK0
(BT

K0
BK0

)−1e.

We decompose it as I1 + I2 + I3 where

I1 =
(
[eT (B̂T

K0
B̂K0

)−1e]−1/2 − [eT (BT
K0
BK0

)−1e]−1/2
)
B̂K0

(B̂T
K0
B̂K0

)−1e,

I2 = [eT (BT
K0
BK0

)−1e]−1/2
(
B̂K0

(B̂T
K0
B̂K0

)−1e−BK0
(B̂T

K0
B̂K0

)−1e
)
,

I3 = [eT (BT
K0
BK0

)−1e]−1/2BK0

(
(B̂T

K0
B̂K0

)−1 − (BT
K0
BK0

)−1
)
e.

Recall that r
(1)
n the convergence rate of maxg∈K0

∥β̂g−βg∥2. In the following, we argue each ∥Ij∥2
is of the order = Op(r

(1)
n ), for j = 1, 2, 3. We first prove ∥I1∥2 = Op(r

(1)
n ). Before that, we show

∥B̂T
K0
B̂K0

−BT
K0
BK0

∥2 = Op(r
(1)
n )

P→ 0. (32)

Note that the matrix B̂T
K0
B̂K0

− BT
K0
BK0

is symmetric, it follows from lemma F.3 that the LHS in

(32) is smaller than ∥B̂T
K0
B̂K0

−BT
K0
BK0

∥∞. Besides, we have

∥B̂T
K0
B̂K0

−BT
K0
BK0

∥∞ ≤ max
g∈K0

∑
j∈K0

|β̂Tg β̂j − βTg βj | (33)

≤ max
g∈K0

∑
j∈K0

(
|β̂Tg β̂j − βTg β̂j |+ |βTg β̂j − βTg βj |

)
≤ max

g∈K0

(
∥β̂g∥2 + ∥βg∥2

)
max
g∈K0

∑
j∈K0

(
∥β̂g − βg∥2 + ∥β̂j − βj∥2

)
= O(r(1)n ).



Supplement to “Maximin-Projection Learning” 27

Therefore, (32) is proven. Note that

λmin(B̂
T
K0
B̂K0

) = min
∥a∥2=1

aT B̂T
K0
B̂K0

a ≥ min
∥a∥2=1

aTBT
K0
BK0

a− max
∥a∥2=1

|aT (B̂T
K0
B̂K0

−BT
K0
BK0

)a|

≥ λmin(B
T
K0
BK0

)− ∥B̂T
K0
B̂K0

−BT
K0
BK0

∥2. (34)

Since the matrixBK0
is of full column rank, the matrixBT

K0
BK0

is invertible and hence λmin(B
T
K0
BK0

) >

0. This together with (34) implies that with probability tending to 1,

lim inf λmin(B̂
T
K0
B̂K0

) > 0 and λmax

(
(B̂T

K0
B̂K0

)−1
)
= O(1). (35)

Similarly we can show that with probability tending to 1,

lim inf λmin

(
(B̂T

K0
B̂K0

)−1
)
> 0 and λmax(B̂

T
K0
B̂K0

) = O(1). (36)

It follows from Cauchy-Schwarz inequality that

∥B̂K0
(B̂T

K0
B̂K0

)−1e∥2 ≤
√

∥B̂K0
(B̂T

K0
B̂K0

)−1e∥22 =
√

∥e∥22λmax

(
(B̂T

K0
B̂K0

)−1
)
. (37)

This together with (35) suggests ∥B̂K0
(B̂T

K0
B̂K0

)−1e∥2 = O(1), with probability tending to 1.

Observe that ∥I1∥2 is bounded from above by

|[eT (B̂T
K0
B̂K0

)−1e]−1/2 − [eT (BT
K0
BK0

)−1e]−1/2|∥B̂K0
(B̂T

K0
B̂K0

)−1e∥2.

To show ∥I1∥2 = Op(r
(1)
n ), it suffices to show

|[eT (B̂T
K0
B̂K0

)−1e]−1/2 − [eT (BT
K0
BK0

)−1e]−1/2| = Op(r
(1)
n ). (38)

LHS of (38) can be represented as

|
(
eT (B̂T

K0
B̂K0

)−1e
)1/2

−
(
eT (BT

K0
BK0

)−1e
)1/2 |(

eT (BT
K0
BK0

)−1e
)1/2 (

eT (B̂T
K0
B̂K0

)−1e
)1/2 . (39)

Note that

eT (B̂T
K0
B̂K0

)−1e ≥ ∥e∥22λmin

(
(B̂T

K0
B̂K0

)−1
)
.

This together with (36) implies that with probability tending to 1, the denominator in (39) is uniformly

greater than some constant c > 0, for sufficiently large n.

Hence it suffices to show(
eT (B̂T

K0
B̂K0

)−1e
)1/2

−
(
eT (BT

K0
BK0

)−1e
)1/2

= Op(r
(1)
n ). (40)

It follows from (36) that

lim inf

{(
eT (B̂T

K0
B̂K0

)−1e
)1/2

+
(
eT (BT

K0
BK0

)−1e
)1/2}

> 0,
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with probability tending to 1.

Note that(
eT (B̂T

K0
B̂K0

)−1e− eT (BT
K0
BK0

)−1e
)

=

{(
eT (B̂T

K0
B̂K0

)−1e
)1/2

−
(
eT (BT

K0
BK0

)−1e
)1/2}{(

eT (B̂T
K0
B̂K0

)−1e
)1/2

+
(
eT (BT

K0
BK0

)−1e
)1/2}

.

It suffices to show (
eT (B̂T

K0
B̂K0

)−1e− eT (BT
K0
BK0

)−1e
)
= Op(r

(1)
n ). (41)

Note that the absolute value of the LHS of (41) can be bounded from above by

∥e∥22∥(B̂T
K0
B̂K0

)−1 − (BT
K0
BK0

)−1∥2. (42)

It follows from (32) and (35) that

∥(B̂T
K0
B̂K0

)−1 − (BT
K0
BK0

)−1∥2 (43)

≤ ∥(B̂T
K0
B̂K0

)−1∥2∥B̂T
K0
B̂K0

−BT
K0
BK0

∥2∥(BT
K0
BK0

)−1∥2 = Op(r
(1)
n ).

Combining (42) together with (43), we obtain (41). Hence, we have shown ∥I1∥2 = Op(r
(1)
n ).

Next we show ∥I2∥2 = Op(r
(1)
n ). Note that ∥I2∥2 can be bounded from above by

[eT (BT
K0
BK0

)−1e]−1/2∥B̂K0
−BK0

∥2∥(B̂T
K0
B̂K0

)−1e∥2. (44)

Similar to (37), we can show ∥(B̂T
K0
B̂K0

)−1e∥2 = Op(1). By (44), it suffices to show

∥B̂K0
−BK0

∥2 = Op(r
(1)
n ). (45)

However, it is immediate to see (45) holds by definitions of B̂K0
and BK0

.

As for ∥I3∥2, we can similarly show

∥I3∥2 ≤ [eT (BT
K0
BK0

)−1e]−1/2∥BK0
∥2∥(B̂T

K0
B̂K0

)−1 − (BT
K0
BK0

)−1∥2∥e∥2. (46)

By (32), the RHS of (46) is Op(r
(1)
n ). This implies ∥I3∥2 = Op(r

(1)
n ). Under Condition (C1), we have

r
(1)
n → 0. Therefore, β̃M is consistent.

Step 2: SinceBK0
is of full column rank, the matrixBT

K0
BK0

is invertible and hence λmin(B
T
K0
BK0

) >

0. It follows from (32) and (34) that the matrix B̂T
K0
B̂K0

is invertible with probability tending to 1.

Step 3: In Step 1, we have shown β̃M is consistent to βM(0). Under Condition (C1), all estimators

are consistent. Hence, we have

min
g∈Kc

0

β̂Tg β̃
M ≥ min

g∈Kc
0

βTg β
M
(0) − max

g∈Kc
0

∥β̃g∥2∥β̃M − βM(0)∥2 − ∥βM(0)∥max
g∈Kc

0

∥β̂g − βg∥2

= min
g∈Kc

0

βTg β
M
(0) + op(1). (47)
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Similarly, we can show

max
g∈K0

β̂Tg β̃
M ≤ max

g∈K0

βTg β
M
(0) + op(1). (48)

It follows from lemma 3 that maxg∈K0
βTg β

M
(0) < ming∈Kc

0
βTg β

M
(0). This together with (47) and (48)

suggests that with probability tending to 1, we have

min
g∈Kc

0

β̂Tg β̃
M > max

g∈K0

βTg β̃
M . (49)

Step 4: It follows from lemma 3 that each element in the vector ω0 = (ω
(1)
0 , . . . , ω

(|K0|)
0 ) =

(BT
K0
BK0

)−1e is nonnegative. Under Condition (C2), it is further assumed that all elements in

ω0 are nonzero. Hence, we obtain ω
(k)
0 > 0, ∀k = 1, . . . , |K0|.

Besides, it follows from (43) that

∥(B̂T
K0
B̂K0

)−1e− (BT
K0
BK0

)−1e∥2 ≤
√

|K0|∥(B̂T
K0
B̂K0

)−1 − (BT
K0
BK0

)−1∥2
P→ 0.

This implies that with probability tending to 1, all the elements in the vector (B̂T
K0
B̂K0

)−1e are

nonnegative. Combining results shown in Steps 2 and 3, it follows from lemma 3 that β̃M is the

solution to the problem (12).

Step 5: As for ĉM , we have

|ĉM − cM(0)| = | ĉ0
Ĝ0

− c0
G0

| ≤ 1

Ĝ0

|ĉ0 − c0|+ |
ming β

T
g β

M −ming β̂
T
g β̂

M

Ĝ0G0

|.

By the definition of K0, we have ming β
T
g β

M
(0) = ming∈K0

βTg β
M
(0). When β̂M = β̃M , it follows from

(49) that ming β̂
T
g β̂

M = ming∈K0
β̂Tg β̂

M . Hence, we obtain

|min
g
βTg β

M
(0) −min

g
β̂Tg β̂

M | = |min
g∈K0

βTg β
M
(0) − min

g∈K0

β̂Tg β̂
M |

≤ max
g∈K0

∥βg∥2∥β̂M − βM(0)∥2 + ∥β̂M∥2 max
g∈K0

∥β̂g − βg∥2,

with probability tending to 1. Convergence rate of ĉM thus follows from those of β̂M and β̂g, g ∈ K0.

This completes the proof.

E.6. Proof of theorem 6

In the proof of theorem 5, we have shown that

β̂M = [eT (B̂T
K0
B̂K0

)−1e]−1/2B̂K0
(B̂T

K0
B̂K0

)−1e,

βM(0) = [eT (BT
K0
BK0

)−1e]−1/2BK0
(BT

K0
BK0

)−1e.
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Define t0 = BT
K0

(BT
K0
BK0

)−1e and let eg be the base vector with the gth coordinate as 1. For any

matrix Ψ, denote by N(Ψ) the projection matrix I −Ψ(ΨTΨ)+ΨT . For any vector a ∈ Rs, it follows

from the proof for theorem 5 that aT (β̂M − βM ) can be decomposed as η1 + η2 + η3 where

η1 =
(
[eT (B̂T

K0
B̂K0

)−1e]−1/2 − ∥t0∥−1/2
2

)
aT t0,

η2 =
1

∥t0∥2
aT
(
B̂K0

(B̂T
K0
B̂K0

)−1 −BK0
(BT

K0
BK0

)−1
)
e,

η3 =
(
[eT (B̂T

K0
B̂K0

)−1e]−1/2 − t
−1/2
0

)(
aT B̂K0

(B̂T
K0
B̂K0

)−1e− aT t0

)
,

for any a ∈ Rs with ∥a∥2 = 1.

Condition (C3) implies all β̂g, g ∈ K0 and ĉ0 are m−1/2 consistent. Using a second order Taylor

expansion, we can show

√
mη1 =

√
m
∑
g∈K0

1

∥t0∥2

(
aTN(BK0

)(β̂g − βg)t
T
0 vg − aT vgt

T
0 (β̂g − βg)

)
+ op(1),

and

√
mη2 =

√
m

∥t0∥3
∑
g∈K0

eT (BT
K0
BK0

)−1ega
T t0t

T
0 (β̂g − βg) + op(1),

where vg = BK0
(BT

K0
BK0

)−1eg, eg is the basis vector with the gth coordinate equal to 1.

Using similar arguments in the proof of theorem 5, we can show(
eTK(B̂

T
K0
B̂K0

)−1eK

)−1/2
−
(
eTK(B

T
K0
BK0

)−1eK
)−1/2

= op(1),

and hence

√
mη3 = op(1)

√
m
(
aT B̂K0

(B̂T
K0
B̂K0

)−1e− aT t0

)
= op(1)Op(1) = op(1).

Combining these results together, we have that
√
m(β̂M − βM(0)) is equivalent to

√
m

∥t0∥2

∑
g∈K0

{
vTg eN(BK0

)− eT vgN(t0)
}
(β̂g − βg). (50)

Under Condition (C3), the set of vectors {
√
m(β̂g − βg), g ∈ K0} are asymptotically normally dis-

tributed. The asymptotic normality of β̂M thus follows.

Similarly, we can show
√
m(ĉM − cM(0)) is equivalent to∑
g∈K0

√
m(β̂g − βg)

Tψg + ψ0

√
m(ĉ0 − c0), (51)

for some constant ψ0 and vectors ψg, g ∈ K0. Hence,
√
m(ĉM − cM(0)) is also asymptotically normal.

To derive the form of VM , let Ψ = (ψ1, . . . , ψG) and ΨK0
be the matrix formed by columns in

Ψ. Similarly define U = (v1, . . . , vG) and UK0
. For any m × n matrix A, denoted by vec(A) the



Supplement to “Maximin-Projection Learning” 31

mn × 1 vector obtained by stacking the columns of the matrix A on top of one another. For any

vector a = (a1, . . . , ap)
T and matrix A, define the Kronecker product

a⊗A = (a1A
T , . . . , apA

T )T .

Under Condition (C3), denoted by Φ the asymptotic covariance matrix of

Z =

 √
m(ĉ0 − c(0))

√
m(vec(B̂K0

)− vec(BK0
))

 .

Besides, let

J =
1

∥t0∥2
[
(UTK0

e)⊗ {N(BK0
)T −N(t0)

T }
]
,

and Ψ0 = (ψ0, vec
T (Ψ))T . Using some algebra, it follows from (50) and (51) that

VM = lim
n

cov

 √
m(ĉM − cM(0))

√
m(β̂M − βM(0))

 = lim
n

cov

 ΨT
0 Z

JTZ

 = (Ψ0, J)
TΦ(Ψ0, J).

The proof is hence completed.

F. Technical lemmas and definitions

Lemma F.1. For any vectors a, b subject to the constraint ∥a∥2 = ∥b∥2 = 1, there exits an orthog-

onal matrix Γ such that

Γa = (1, 0, . . . , 0)T , Γb = (c,
√

1− c2, 0, . . . , 0)T ,

where c = aT b.

Proof: Denote Γ1 to an arbitrary orthogonal matrix whose first column vector is equal to a.

Assume Γ1 = (a, u2, . . . , up)
T where ui is orthogonal to a for i ≥ 2, we have

Γ1a = (1, 0, . . . , 0)T , Γ1b = (c, dT )T ,

where d = (uT2 b, . . . , u
T
p b). Now define Γ̃2 to be any (p− 1)× (p− 1) orthogonal matrix with the first

column equal to d/∥d∥2 and

Γ2 =

 1 0

0 Γ̃2

 ,

the assertion follows by setting Γ = Γ2Γ1.

Definition F.1. A s× 1 random vector X is said to have a spherically symmetric distribution if

for every s× s orthogonal matrix Γ, ΓX
d
= X.
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Lemma F.2 (Fang et al. (1990)). Assume s × 1 random vector X = (X1, . . . , Xs)
T is spheri-

cally distributed, then  X1

X2

 d
=

 rdU1

rdU2

 ,

where U1 and U2 uniformly distributed on the L2 ball: u21 + u22 = 1. r
d
= ∥X∥2 ≥ 0 and d > 0 are

random variables distributed independently of U1 and U2.

Lemma F.3. For any symmetric matrix A, we have ∥A∥2 ≤ ∥A∥∞.

Proof: ∥A∥22 ≤ ∥A∥1∥A∥∞. Since A is symmetric, ∥A∥1 = ∥A∥∞ and the assertion follows.

Proof of lemma 4: Let βM = argmaxβ:∥β∥2=1ming β
Tβg, for any β subject to the constraint

∥β∥2 = 1, there exists some j such that

βTj β ≤ min
g
βTg β

M .

This together with the assumption on h suggests for any t, we have

h(β, βj , t) ≤ min
g
h(βM , βg, t),

which further implies

Eh(β, βj , T ) ≤ Emin
g
h(βM , βg, T ) ≤ min

g
Eh(βM , βg, T ).

The proof is hence completed.

Proof for lemma E.1, E.2 and E.3: Proofs for these lemmas are similar to those of lemma 2-4 in

the paper Avi-Itzhak et al. (1995). We note that although in Avi-Itzhak et al. (1995), they require

∥βg∥2 = 1 for all g, and βg’s to be linearly independent, these assumptions can be relaxed. We provide

proofs for these lemmas below.

Proof for lemma E.1: If K(β0) = [1, . . . , G], the proof becomes trivial. Otherwise, denoted by

S(β0) = [1, . . . , G]−K(β0), we have S(β0) ̸= ∅. Let

∆0 = min
g∈S(β0)

βT0 βg − F (β0).

By definition, we have ∆0 > 0.

Let M0 = maxg=1,...,G ∥βg∥2, ε = ∆0/(3M0). For any β such that ∥β − β0∥2 < ε, we have

|βTβg − βT0 βg| < M0ε =
∆0

3
,
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and hence

βT0 βg −
∆0

3
< βTβg < βT0 βg +

∆0

3
. (52)

The first inequality in (52) implies

min
g∈S(β0)

βTβg > min
g∈S(β0)

βT0 βg −∆0/3, (53)

while the second inequality in (52) suggests

max
g∈K(β0)

βTβg < max
g∈K(β0)

βT0 βg +∆0/3 = F0 +∆0/3. (54)

Combining (53) with (54), we obtain

max
g∈K(β0)

βTβg < F0 +
∆0

3
≤ min

g∈S(β0)
βT0 βg −∆0 +

∆0

3
< min

g∈S(β0)
βTβg.

The proof is hence completed.

Proof for lemma E.2: Define K0 by

K0 = {g ∈ {1, . . . , G} : βTg β
M = min

j
βTj β

M}.

Obviously, K0 is unique. Besides, by definition, we have

min
g∈Kc

0

βTg β
M > βTj β

M , ∀j ∈ K0.

Moreover, since βTj β
M are the same for all j ∈ K0, we have βM ∈ EK0

(B).

Proof for lemma E.3: Any unit length vector β0 can be represented as

β0 =
β + δ

∥β + δ∥2
,

for some vector δ. We further decompose δ = δ1 + δ2 where δ1 ∈ C(BK0
) and δT2 BK0

= 0. Let

β
′
=

β + δ1
∥β + δ1∥2

.

Since β ∈ C(BK0
), we have β

′ ∈ C(BK0
) and δT2 β = 0.

Observe that

∥β′ − β∥22 = 2− 2βTβ
′
= 2− 2

1 + βT δ1√
1 + ∥δ1∥22 + 2βT δ1

≤ 2− 2
1 + βT δ1√

1 + ∥δ∥22 + 2βT δ1
= ∥β0 − β∥22 < ε2.

This implies β
′
also lies within the ε-neighborhood of β. Besides, for any g ∈ K0,

βTg β0 =
βTg (β + δ)√

1 + ∥δ∥22 + 2βT δ
≤

βTg (β + δ1)√
1 + ∥δ1∥22 + 2βT δ1

= βTg β
′
.

Therefore, we obtain FK0
(β′) ≥ FK0

(β0). The proof is hence completed.
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